

Estimated Greenhouse Gas Emissions and Primary Energy Demand of Passenger Vehicles – 2nd edition

Life Cycle Assessment Methodology and Data

Acknowledgement - This document was prepared by Dr. Gerfried Jungmeier, Lorenza Canella and Stephan Schwarzinger from JOANNEUM RESEARCH under Contract of FIA (Fédération Internationale de l'Automobile) and ÖAMTC (Österreichischer Automobil-, Motorrad- und Touring Club).

The <u>PAUL SCHERRER INSTITUTE</u> (PSI) in Switzerland reviewed the methodology, basic data and draft results [Bauer 2022] of the LCA Expert Tool 2.1 [Jungmeier et al. 2022], which is the basis for this document.

Copyright © **Green NCAP 2022** - This work is the intellectual property of Green NCAP. Permission is granted for this material to be shared for non-commercial, educational purposes, provided that this copyright statement appears on the reproduced materials and notice is given that the copying is by permission of Green NCAP. To disseminate otherwise or to republish requires written permission from Green NCAP.

February 2024

CONTENTS

1.	INTRODUCTION	5
1.1.	Background	5
1.2.	Project Aim	5
2.	METHODOLOGY OF LIFE CYCLE ASSESSMENT (LCA)	7
2.1.	Definition Life Cycle Assessment (LCA)	7
2.2.	System Boundaries	8
2.3.	Functional Unit	12
2.4.	Allocation	12
2.5.	Consideration for End-of-Life	13
2.6.	Environmental Effects	13
2.6.1.	Greenhouse Gas Emissions	13
2.6.2.	Land Use Change and Biofuels	14
2.6.3.	Primary Energy Demand	16
2.7.	Description of Terms for Communication	16
3.	DATA BASE	18
3.1.	Data Structure	18
3.2.	Foreground Data	19
3.2.1.	Vehicle Specification	20
3.2.2.	Biomass Resources	20
3.2.3.	Electricity Mix	20
3.3.	Background Data	21
3.3.1.	Vehicle	21
3.3.1.1.	Vehicle Production	21
3.3.1.2.	Battery Production	21
	Vehicle Operation	26
	Vehicle Maintenance	26
3.3.1.5.	Vehicle End-of-Life	27
3.3.2.	Supply of Fuels and Energy	27
3.3.2.1.	Hydrogen Production	27
3.3.2.2.	Biofuel Production	27
	Land Use Change of Biofuels	27
3.3.2.4.	Supply of Fuels and Electricity	27
4.	MAIN FINDINGS AND CONCLUSIONS	29

ANNEX I: MAIN DATA	30
ANNEX II: ABBREVIATIONS	45
ANNEX III: REFERENCES	46

1. INTRODUCTION

1.1. Background

There is international consensus that the environmental effects of transportation systems can only be analysed and compared on the basis of Life Cycle Assessment (LCA) including the production, operation and the end-of-life treatment of the various facilities.

Life cycle assessment is a method to estimate the material and energy flows of a product (e.g. transportation service) to analyse environmental effects over the entire lifetime of the product 'from cradle to grave'.

Based on the methodology of 'Life Cycle Assessment' (LCA) an LCA Expert Tool (Version 2.1) was developed and documented in a report and a handbook in 2022 to estimate the greenhouse gas (GHG) emissions and the primary energy demand (PED) of 157 different transportation systems with a passenger vehicle using different fuels, propulsion systems and state of technologies in 40 countries [Jungmeier et al. 2022]. This tool was already used to calculate and publish the LCA based GHG emissions and primary energy demand of <u>61 vehicles tested in Green NCAP</u> in April 2022 [Jungmeier et al. 2022a].

The LCA Expert Tool (2.1) is updated (v 2.3) and is used to assess the life cycle based GHG emissions and primary energy demand of vehicles available on the current European market as a basis to provide this information to consumers.

1.2. Project Aim

The aim of the project is to provide the LCA data and results for an online life cycle based environmental information system of vehicles for European consumers and preparing to roll out this interactive tool internationally. For that purpose, the calculation methods and basic data from the LCA Expert Tool (2.3) are used (Jungmeier et al. 2022) as input for the web pages of the different FIA mobility clubs and consumer organisations.

The goal of the Life Cycle Assessment (LCA) is to estimate the greenhouse gas emissions and the primary energy demand of vehicles currently available on the European market. The Life Cycle Assessment is done for generic global supply chains of vehicle production and energy supply in Europe between 2022 and 2037. The main focus is to estimate significant differences between the vehicles and the main influencing parameters among:

- Propulsion system
- Type of fuel
- Energy demand
- Vehicle mass
- Battery capacity
- CH₄ and N₂O emissions from vehicles equipped with an ICE.

No brand specific calculations for the vehicle production are made. The calculation is done for different total lifetime mileages ranging up to maximum 240,000 km in maximum 16 years vehicle lifetime. The annual millage can be selected by the users of the online LCA platform.

The life cycle based environmental information about passenger vehicles include the GHG emissions in CO_2 -equivalent (sum of CO_2 , CH_4 und N_2O) and the total cumulated primary energy demand (PED) with its fossil and renewable shares. This environmental information is estimated and documented per driven kilometre and in absolute values over the entire life cycle, using the shares of vehicle production, operation and end-of-life treatment in Europe. For the electric vehicles (BEV and PHEV) the current and future national electricity mixes for each of the 27 countries in EU27, the UK and CH, EU 28 (incl. UK) and a

100% renewable electricity mix from wind, photovoltaics and hydro power in Europe, are made available. For conventional ICE, HEV and PHEV vehicles using fossil fuel (with biofuel blending diesel B7 and petrol E10), for all countries, the same assumptions regarding the fuel supply are made as in the EU28 (incl. UK) average situation. The approach is consistent with LCA Expert Tool 2.3.

2. METHODOLOGY OF LIFE CYCLE ASSESSMENT (LCA)

2.1. Definition Life Cycle Assessment (LCA)

Life cycle assessment is a method to estimate the material and energy flows of a product (e.g. transportation service) to analyse environmental effects over the entire lifetime of the product 'from cradle to grave'.

The environmental effects of the various stages in the life cycle of the transportation systems with passenger vehicles are investigated. The stages include extraction of raw materials, manufacturing, distribution, product use, recycling and final disposal (from cradle to grave), (Figure 1). Life cycle assessment allows the comparison of different systems offering the same transportation service during the same time period and identifies those life cycle phases having the highest environmental effects.

The most important attribute in the LCA definition is 'estimated', so all environmental results based on LCA are an estimation, as it is not possible to identify all environmental contributions in the life cycle of a transportation system totally. However, due to the strong development of LCA and its databases in the last 15 years the most relevant influences on the GHG emissions and the primary energy demand of different transportation systems can be identified and calculated.

To reflect the LCA definition, all results are usually given in ranges, as by comparing different transportation systems it is only relevant if the ranges are significantly different. Partly overlapping ranges between two systems indicate that there is no significant difference between them in terms of GHG emissions and primary energy demand.

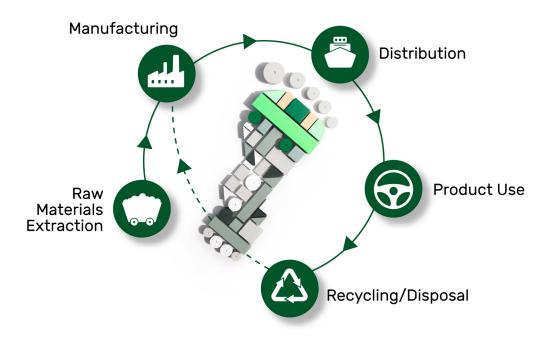


Figure 1 - Scheme of Life Cycle Assessment

According to ISO 14040, a LCA consists of the 4 following phases, which are closely linked during the whole process of applying LCA methodology (Figure 2):

- Goal and scope definition,
- Inventory analyses,
- Impact assessment, and
- Interpretation & documentation.

In the inventory analysis, the mass and energy balance is made along the whole process chain to calculate the physical (primary) energy demand and the physical emissions of each single greenhouse gas.

In the impact assessment the single energy inputs and emissions are aggregated to the primary energy demand and the global warming effects by applying the global warming potentials to the single GHG emissions.

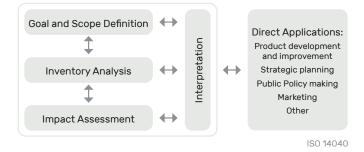


Figure 2 - Life Cycle Assessment framework according to ISO 14040

The LCA performed here is an 'attributional LCA', as an attributional life cycle assessment estimates what share of the global environmental burdens belongs to the transportation service and is based on average data. In contrast, a 'consequential LCA' gives an estimate of how the global environmental burdens are affected by the production and use of the product and ideally uses marginal data in many parts of the life cycle.

2.2. System Boundaries

For providing a transportation service, all processes must be analysed from raw material and resource extraction to the vehicle offering the transportation service. The elements and system boundaries of vehicle's LCA include all technical systems using and converting primary energy and material resources to provide the transportation service and contributing to environmental effects.

In <u>Figure 3</u> the simplified scheme of the process chain exemplary for a battery electric vehicle is shown covering the production, the operation and the end-of-life phase of the system:

- The production phase includes the production of the vehicle and the battery.
- The operation phase offers the transportation service by driving the vehicle, charging & fueling infrastructure, electricity grid, electricity and fuel production, spare and maintenance parts and ends with the extraction of primary energy in nature.
- The end-of-life phase includes the dismantling processes of the vehicle and sorting the materials for reuse, recycling and energy generation.

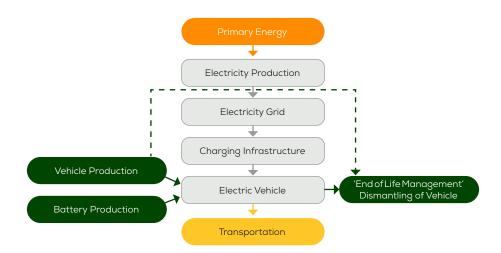
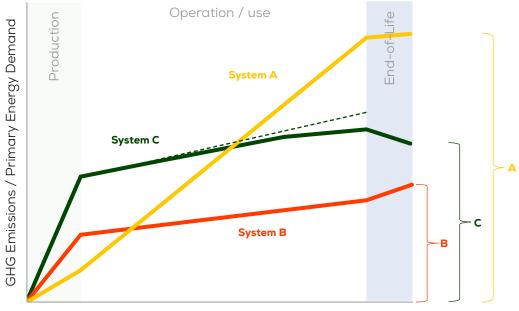



Figure 3 - Scope of life cycle assessment - example battery electric vehicle

Life cycle assessment of the three phases in the life cycle of a vehicle – production, operation (including fuel/energy supply) and end-of-life treatment – cumulates the environmental effects over the whole lifetime. In <u>Figure 4</u> this is shown for three hypothetical vehicle types. The cumulated effects over the entire lifetime are then distributed to the transportation service provided in the operation phase (e.g. 240,000 km in 16 years) to get the specific effects per driven kilometre (e.g. $g CO_2$ -eq./km). If the framework conditions are changing during the operation phase, e.g. changing electricity supply, the effects might be different for each year in the operation phase.

Time / Mileage

Figure 4 - The three phases in the life cycle of a vehicle – production, operation / use (including fuel/energy supply) and end-of-life treatment for 3 hypothetical vehicle types A, B and C

All GHG emissions and energy relevant processes to provide a transportation service with a passenger vehicle are considered in the process chain, in which possible co-products, e.g. animal feed from FAME production, district heat from electricity production, are also accounted for with their effects of substituting for other products and services.

As examples, in <u>Figure 5</u> the process chain for a diesel B7 ICE vehicle and in <u>Figure 6</u> the process chain for a battery electric vehicle are shown.

The schemes of the process chain show the most relevant processes in the LCA of a transportation system from main raw material in nature (on the top) to the provided transportation service (on the bottom).

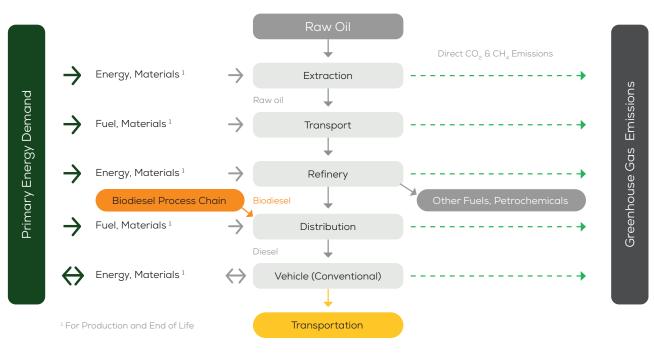
The five most relevant process steps are:

- 1. Cultivation, collection or extraction of raw materials
- 2. Transportation of raw materials
- 3. Conversion of raw materials to transportation fuel and electricity, where other products might be co-produced, e.g. wind power plant, refinery, electrolysis
- 4. Distribution of transportation fuel/energy incl. filling/charging station and infrastructure
- 5. Vehicle using the transportation fuel.

The main inputs to the process steps are energy (e.g. electricity, fuels), auxiliary materials (e.g. fertilizer, chemicals) and materials for the production of the energy conversion and transportation facilities; e.g. the materials for the production of the vehicle also including the battery for BEV and the energy for manufacturing and assembling.

The main outputs of a process step are beside transportation fuels, GHG emissions and co-products (e.g. animal feed, chemicals, heat).

On the top of a process step the most important input into it (e.g. raw oil, hydrogen) is shown and an arrow links the process to the previous step in the process chain. On the bottom of the process step the most important output (e.g. diesel, electricity) is shown and an arrow links the process to the next step in the process chain.


On the left hand side, the input in terms of primary energy demand is shown, which is associated with the energy and material needed, and is calculated in the LCA.

On the right hand side, the output in terms of GHG emissions (covering CO_2 , CH_4 , and N_2O) is shown, which is associated with the energy and material needed, and is calculated in the LCA.

The GHG emissions cover:

- Direct emissions from fuel combustion in the process step
- Direct emissions from processing or losses (e.g. CH₄ from natural gas extraction, N₂O from fertilization)
- Indirect emissions from the supply of energy & materials and the production & end-of-life of the facilities for energy conversion and transportation.

In the Inventory Analysis of the LCA (see <u>Figure 2</u>) all physical mass and energy flows e.g. CO_2 , N_2O , electricity are analysed or estimated in the process chains. In the Impact Assessment, the results of the inventory analysis of the process chains are assessed for the different impact categories, e.g. the single GHG emissions are added up using the global warming potential of the different gases to the global warming potential in CO_2 -equivalents (see also <u>chapter 2.6.</u>).

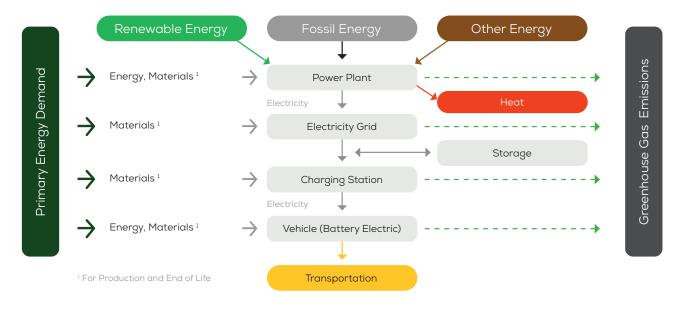


Figure 6 - Process chain for a battery electric vehicle using an electricity mix

Depending on the propulsion system and the energy carrier, the transportation systems have different GHG emissions and primary energy demand, which occur on different locations, at different phases and time in the life cycle. For example: an ICE vehicle using diesel has the highest CO_2 emissions from the stack of the vehicle operation, a biodiesel ICE vehicle has the highest N₂O emissions from nitrogen fertilization of the raw material cultivation in agriculture and a current battery electric vehicle using renewable electricity has the highest CO_2 emissions deriving from the battery production.

2.3. Functional Unit

In LCA the cumulated environmental effects over the lifetime are attributed to the functional unit, which is the service of a system that is provided. In this analysis the considered transportation systems provide a transportation service with passenger vehicles. That means that the cumulated environmental effects of a passenger vehicle are attributed to the functional unit of driving:

- 1 kilometre and
- Max. 240,000 km in the total lifetime in max. 16 years.

These functional units are also used to compare the different transportation systems:

- GHG emissions in g CO₂-eq./km and tonnes CO₂-eq./vehicle at the different stages in the life cycle, e.g. production, fuel/energy supply, operation and end-of-life
- Primary energy demand in kWh_{total}/km and MWh/vehicle with the %-share of renewable energy.

The functional units are split up in the following contributions:

- Vehicle production in absolute values (total, battery, fuel cell and H₂-tank)
- Fuel/energy supply per km for each year (1 to 16) separately
- Maintenance per kilometre
- Direct GHG emissions of ICE, HEV and PHEV vehicle operation per kilometre
- Vehicle end-of-life in absolute values.

The different possible driving ranges per filling or charging of an ICE, HEV, PHEV, BEV and FCV cannot be reflected in these functional units.

2.4. Allocation

An allocation of environmental effects in LCA is necessary, where a process produces more than one product, e.g. in an oil refinery: different energy carriers and raw materials for chemical industry, heat and electricity in a combined heat and power (CHP) plant, production of FAME with animal feed and glycerin as co-products.

As this LCA focuses on energy systems, wherever reasonable, an allocation for energy carriers as coproduct is done based on the energy content (lower heating value) of the products ("energy allocation"). For all other co-products e.g. animal feed in the value chain of FAME and bio-ethanol a credit for the substituted feed is given. Also for the glycerin and fertilizer coproduced with FAME a credit for the substituted synthetic glycerin and synthetic fertilizer is given.

A special case of allocation appears, when an automotive battery is also used in a 2nd life for a stationary application ('2nd stationary life') as modelled here (see <u>chapter 3.3.1.2.</u>). In that case the GHG emissions and the primary energy demand from the battery production are allocated to the automotive and stationary use. The allocation is based on the share of total cumulated electricity stored in the 1st automotive life in the BEV and the 2nd stationary life. Here, the same amount of stored electricity in the automotive and stationary use is assumed.

2.5. Consideration For End-of-Life

The consideration of the environmental effects of the 'end-of-life' phase covers the following two aspects:

- GHG emissions and primary energy demand for collection, dismantling and recycling of vehicles to secondary material
- Credits for substitution of primary material by recovered secondary material.

The given credits for the secondary material recovered depend on the purity of the single materials or mix of materials. As the given credits are higher than the GHG emissions and primary energy demand of the recovery processes for most of the considered vehicles, the end-of-life phase might have negative GHG emissions and a negative primary energy demand.

The influence of the end-of-life GHG emissions and primary energy demand in the total lifetime of the vehicle is relatively small, compared to the production and operation phase. For this reason, the end-of-life is calculated for the year 2037 and is independent from the calculated vehicle lifetime. The calculated vehicle lifetime is a result of the user selected annual mileage and the maximum of 240,000 km and 16 years.

2.6. Environmental Effects

Based on the inventory data two impact categories are assessed:

- 1. Global warming and
- 2. Total primary energy demand.

Additionally, the most relevant aspects of land use change for the raw material production for biofuels on GHG emissions are described. Other environmental effects like emissions to air NOx, SO₂, PM and their consequential impacts like acidification, ozone formation, and human toxicity are not considered¹.

2.6.1. Greenhouse Gas Emissions

The greenhouse gas emissions – carbon dioxide (CO_2), methane (CH_4) and nitrogen oxide/laughing gas (N_2O) – are considered.

As measure of the greenhouse effect of these gases the global warming potential (GWP) is used. This gives the contribution of the different gases to the possible global warming and is expressed in form of an equivalent amount of CO_2 . The concept of global warming potential was developed to compare the contribution of the different gases to global warming. The global warming effect of a kilogram gas is expressed with a multiple ("equivalent factor") of the effect of one kilogram carbon dioxide. With the equivalent factors for 100 years (GWP 100) the amount of the gases is calculated in amount of CO_2 -equivalents (CO_2 -eq.) [IPCC 2019]:

- 1 kg CO_2 = 1 kg CO_2 -eq.
- 1 kg CH₄ = 34 kg CO₂-eq.
- 1 kg N₂O = 298 kg CO₂-eq.

¹ The Clean Air Index in Green NCAP's vehicle rating programme assesses the pollutants produced locally by a vehicle; see: www.greenncap.com

2.6.2. Land Use Change and Biofuels

Biofuels (and E-fuels) contain carbon and its combustion in an ICE creates about the same CO₂ emissions like petrol, diesel or CNG per energy unit.

The biogenic CO_2 emissions to the atmosphere from the combustion of biofuels are calculated to be zero, as the same amount was fixed before in the biomass by photosynthesis taking CO_2 from the atmosphere (CO_2 uptake = CO_2 from combustion).

This accounting system for biogenic CO_2 is used also in the national GHG accounting system following the IPCC guideline for national inventories in the energy sector. Changes and dynamics in the carbon stocks, e.g. the carbon which is stored in plants, litter and soil, in agriculture and forestry are considered in the CO_2 emissions or CO_2 uptake caused by Land Use Changes (LUC) for biomass used for biofuels.

Analysing CO₂ effects from land use change two different types of LUC are relevant (Figure 7):

- Direct Land Use Change (dLUC)
- Indirect Land Use Change (iLUC)

Figure 7 - Direct Land Use Change (dLUC) and Indirect Land Use Change (iLUC)

Direct Land Use Change (dLUC) occurs if for cultivation of energy crops a land use change takes place, e.g. from pasture to crop land. Direct effects can be calculated, e.g. change of carbon storage pools with the difference of carbon stocks from pasture and crop land per hectare. This initial effect, which occurs once, must be allocated to the biomass cultivated on the crop land, e.g. for biofuels.

Indirect Land Use Change (iLUC) occurs if existing crop land is now used for energy crops, which was used for other products before. The demand for these products remains and additional land is used causing land use change on global scale, e.g. conversion of natural forests into agricultural land. Indirect effects can be calculated after localization, which is difficult on a global level. The calculation of this initial effect is done one the difference of the carbon stock from forest and agricultural land. But on a physical level a direct allocation of these indirect effects to a specific agricultural crop, e.g. for biofuel or additional animal feed is not possible. The indirect effects are calculated by using economic models and methods. These models give broad ranges of possible iLUC effects of biomass cultivation for biofuels.

For the calculation of GHG emissions due to Land Use Change the European Commission uses the GLOBIOM-Modell - Global Biosphere Management Model ([Vali H. et al., 2015]; <u>www.globiom.org</u>). IIASA's Global Biosphere Management Model (GLOBIOM) is used to analyse the competition for land use between agriculture, forestry, and bioenergy, which are the main land-based production sectors. As such, the model can provide scientists and policymakers with the means to assess, on a global basis, the rational production of food, forest fiber, and bioenergy, all of which contribute to human welfare. In GLOBIOM no distinction between iLUC and dLUC is possible, as iLUC cannot be allocated to certain agricultural activities.

Exemplary in <u>Figure 8</u> some results of possible LUC effects of biofuel from the GLOBIOM model are shown. The highest possible GHG emissions of LUC are calculated for FAME from palm oil with about 231 g CO_2 -eq./MJ and from soy oil with about 150 g CO_2 -eq./MJ, followed by FAME from rape seed oil with about 65 g CO_2 -eq./MJ. The possible GHG emissions of bio-ethanol from maize, wheat and sugar beet due to LUC effects are with 14 to 34 g CO_2 -eq./MJ significantly lower.

The main data for possible dLUC and iLUC effects on the GHG emissions are shown in <u>Table 14</u> in ANNEX I: MAIN DATA.

The calculation in the Tool only includes possible CO₂ emissions from dLUC; as it was decided among the stakeholder involved.

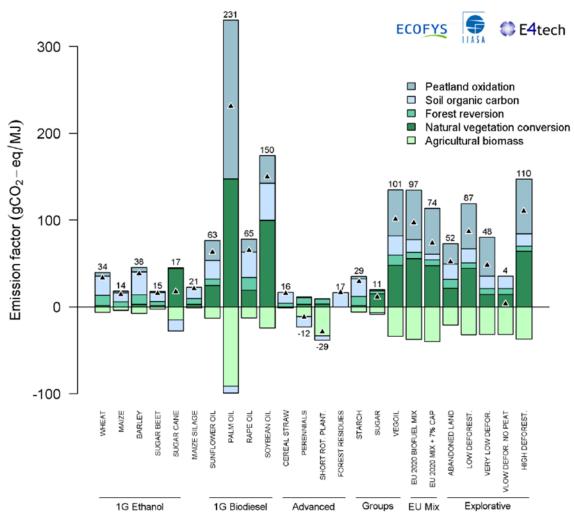


Figure 8 - Possible LUC effects on GHG emissions of biofuels [Vali H. et al., 2015]

Diesel B7 (7 vol.-% FAME) and petrol E10 (10 vol.-% EtOH) are used for ICE, HEV and PHEV, as biofuel blending is state of the art in Europe. Most of this biofuel used is produced in Europe with European feedstock, e.g. wheat, corn, rapeseed and waste cooking oil.

Based on the current legislation in Europe (RED-Renewable Energy Directive [EU 2018]) these biofuels fulfil relevant sustainability criteria e.g. minimum GHG reduction. The combustion of biofuels in ICE, HEV and PHEV is considered to be ' CO_2 neutral'. Therefore, the effect of CO_2 emissions of biofuel blending from ICE is less than 7% compared to pure diesel or petrol due to the lower volumetric heating value of biofuels.

The GHG emissions of biofuel production (e.g. N_2O emissions from agricultural cultivation) are calculated based on LCA incl. possible direct land use change. Indirect land use change effects are not considered as they are out of the scope of the LCA applied here. In other studies addressing land use, possible indirect land use change effects are analysed based on global economic models, e.g. EtOH 43 – 61 g CO₂/kWh and FAME 119 – 238 g CO_2/kWh [EU 2015] for single feedstocks, which might lead to additional CO_2 emissions in the life cycle of 25 – 65 g CO_2/km using pure biofuel with current feedstock mix; with E10 and B7 the effect is correspondingly much lower.

The European biofuel industry follows strict legislation and uses synergy effects (e.g. animal food production, starch products, glycerine). However, it shall be acknowledged that biofuel-production might conflict with food- and feedstock production globally, but these effects are difficult to quantify.

2.6.3. Primary Energy Demand

Based on the amount and type of final energy carriers e.g. fuels, electricity, the necessary amount of primary energy is calculated to supply the energy needed for the transportation systems. E.g. the electricity production in a coal power plant has an average annual efficiency of about 40%; that means that the primary energy demand to produce 1 kWh of electricity is 2.5 kWh of coal. For renewable electricity generation from wind, photovoltaics and hydro power the annual efficiency of the power plant is set per definition to 100%; that means that the primary energy demand to produce 1 kWh of electricity is 1 kWh of wind, solar or hydro power.

The following primary energy resources are considered:

- Fossil resources: coal, oil and gas,
- Renewable resources: hydro power, biomass, solar, wind
- Other resources e.g. nuclear², waste, residues.

The primary energy demand is calculated based on the lower heating values.

2.7. Description of Terms For Communication

For communication to a broader audience the most relevant terms are briefly described. The terms used are the following:

- Life Cycle Assessment (LCA) is a method to estimate the overall environmental effects of a vehicle in its total lifecycle, covering vehicle production, vehicle operation and end-of-life of the vehicle
- GHG emissions are given in CO₂-equivalent (CO₂-eq.) covering the sum of carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) according to their contribution to global warming for a time horizon of 100 years (GWP 100). The unit is g CO₂-eq. per kilometre driven
- The Primary Energy Demand is the sum of all primary energy taken from nature to provide the transportation service covering coal, oil, natural gas, hydro, wind, solar and nuclear energy. The unit is kWh per kilometre driven
- The renewable share of primary energy demand covers hydro, wind, solar energy and biomass
- The GHG emissions and the primary energy demand are given in:
 - Total LCA and
 - □ Contributions in the three phases of the life cycle
 - Production
 - Operation and
 - End-of-life
- Production covers the production of the total vehicle (incl. battery, fuel cell, H₂-tank)
- Operation covers the operation of the vehicle with the supply of energy, the use of energy and maintenance

² Except for the electricity mixes, the nuclear primary energy is included in the fossil primary energy due to the used data source.

End-of-life covers the recycling and waste treatment of used vehicles. As the recovered secondary material substitutes for primary material, the GHG emissions and the primary energy demand can be negative.

3. DATA BASE

3.1. Data Structure

Basically, in the LCA data are used that represent adequately the technical, geographical and timely framework condition to fulfil the goal and the scope of the LCA based estimation of GHG emissions and primary energy demand. In this assessment and in the LCA Expert Tool, the different transportation systems are compared to each other. The most important aspect of the basic data is to reflect the main differences (e.g. fuel demand per km) between the systems and the states of technology, in order to to identify the most significant differences between the GHG emissions and the primary energy demand. The basic data are based on generic and global process chains, e.g. steel and aluminium.

So the main focus of the data collection and selection is on the main influences that effect the estimated overall GHG emissions and primary energy demand significantly.

By reflecting this, in the LCA two different types of data categories (see example Figure 9) are set up: the fore- and background data.

The foreground data, which have a significant influence on the total environmental effects considering the specific goal and scope, determine most of the differences between the considered vehicles and their technologies. The foreground data must be collected, assessed and documented explicitly in accordance to the goal and the scope of the LCA. The foreground data for this LCA are mainly the following vehicle data, received from the mobility clubs and Green NCAP:

- Propulsion system
- Type of fuel
- Fuel/energy demand
- Vehicle mass
- Battery capacity
- CH₄ and N₂O emissions from vehicles equipped with an ICE Vehicle (where available from Green NCAP testing) and the
- Average electricity mix for the considered countries and the EU28 mix (incl. UK).

The background data, which have a minor influence on the difference between the considered environmental effects of the compared vehicles, e.g. environmental effects of steel or petrol E10 supply, are taken and documented from adequate data bases, e.g. own JOANNEUM data, GEMIS 5.0 [GEMIS 2019], ecoinvent 3.4 [Ecoinvent 2019]. The background data are used referring to the goal of this LCA, where the Life Cycle Assessment is performed for generic global supply chains of vehicle production and energy supply in Europe between 2022 and 2037.

In general, the use of different background data sources might lead to methodological inconsistencies (e.g. allocation, state of technology etc.) and to some extent might lead to arbitrary results. For this reason, priority is given in using the different databases. For the background data, JOANNEUM data sets are of highest priority and the missing data are added from GEMIS and from ecoinvent. All relevant data are explicitly documented in the following chapters.

Typical background data for the LCA are about:

- Electricity mix for auxiliary processes
- Production of materials for vehicles
- Auxiliary material and energy for processes
- Distribution infrastructure (e.g. electricity, hydrogen, liquid and gaseous fuels).

The background data are interpolated between 2020, 2030 and 2050, where necessary.

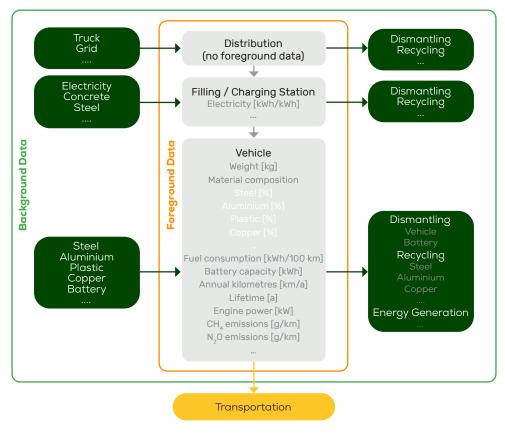


Figure 9 - Examples of foreground data ('Vehicle', 'Filling/charging station',) and background data ('Material and component production', 'Dismantling, recycling and energy generation')

In the initial state of the LCA it is not always entirely clear, which data are explicitly foreground data and which are the background data, e.g. charging infrastructure for electric vehicles, as this depends on the specific aim and goal of the LCA. This is also in accordance to the iteration processes according to ISO 14040 (see Figure 2). For this purpose also relevant inputs and clarification from the continuous stakeholder process, as well as requirements from the future usage of the Tool are used to finally set the foreground data explicitly.

All basic data are documented and integrated in the LCA Expert Tool v2.3, and the most relevant data are also given in this report. The foreground data and selected background data were discussed among the stakeholders.

3.2. Foreground Data

There are three groups of foreground data specified:

- 1. Specification of the vehicle
- 2. Resources and processes used to produce the energy carrier for the vehicle
- 3. Possible future developments.

3.2.1. Vehicle Specification

The foreground data for the specification of the vehicle are:

- Vehicle data
 - Mass
 - □ Annual kilometres [km/a]: defined by user with max 240,000 km in lifetime
 - □ Lifetime: maximum 16 years
 - Energy demand
 - □ CH₄ and N₂O emissions: if not available, default data are used [Jungmeier et al 2022]
- Battery and charging
 - □ Capacity [kWh]
 - □ Lifetime: same as vehicle based on stakeholder decision: max. 240,000 km
 - Charging losses [%]: 2% charging losses outside the vehicle are considered [Green NCAP 2022]
 - □ Location of battery production [%] (interpolated for 2022 based on [Hill et al. 2021] and [EUROBAT 2021])
 - China: 31%
 - Europe: 56%
 - USA: 13%
 - □ End-of-life [%]
 - Material recycling: 97%
 - 2nd stationary life: 3%.

3.2.2. Biomass Resources

The foreground data for the biogenic resources to produce and supply the energy carrier for the vehicle are:

- Land use change (LUC) (<u>Table 1</u> in ANNEX I: MAIN DATA), where a default value for land use change of 10% is assumed, considers: sugar cane from pasture, soy beans from pasture, palm oil from tropical forest.
- Share of biofuel blending biodiesel (FAME) in diesel: 7 vol.-%, bioethanol (EtOH) in petrol: 10 vol.-%.
- Biomass mix (<u>Table 2</u> in ANNEX I: MAIN DATA) ([JRC 2020] and [JOANNEUM RESEARCH 2022])
 - □ FAME rape seed oil, cooking oil and animal fat, palm oil, soya oil
 - □ EtOH wheat and maize, sugar beet, sugar cane, wood, straw.

3.2.3. Electricity Mix

For the European countries, the national demand electricity mix, its GHG emissions and primary energy demand are taken based on the EU Study commissioned by DG CLIMA 2020 [Hill et al. 2020]. In these LCA data, import and export of electricity as well as allocation due to coproduced heat in combined heat and power (CHP) plants are considered. Only for Germany the electricity mix is based on the study by IINAS [IINAS 2021]³, as it was decided in the stakeholder consultations based on an explicit wish of ADAC.

For the electric vehicles using the renewable electricity mix from PV, wind and hydro power, no storage system is integrated, to reflect any possible differences of the timing of the electricity generation and the charging of the electric vehicle.

³ The mix for 2020 is not used for the calculation of the GHG emissions in 2022 in DE, as the GHG emissions for DE are taken directly from the Bundesanzeiger [Bundesanzeiger 2021]. Further details see chapter 3.3.2.4.

The shares of the electricity mix of the different countries are shown in the <u>Table 3</u> in ANNEX I: MAIN DATA. Between 2020, 2030 and 2050, the foreground data are interpolated for the 16 years of lifetime of the vehicles.

It is important to notice that in the calculations of the operation phase of the vehicle, the changes of the energy/electricity supply in the lifetime of the vehicle are considered.

3.3. Background Data

The background data cover all other data that are necessary to estimate the LCA based GHG emissions and the primary energy demand of the transportation systems with passenger vehicles. These data derive from different data bases (e.g. GEMIS 5.0, ecoinvent 3.4) and own data. In the following section the most relevant background data, which are necessary to assess and discuss the main results of the LCA, are shown.

The background data are grouped as follows:

- Vehicle covering production, operation, maintenance and end-of-life
- Supply of energy carriers to the vehicle also covering production of hydrogen, electricity supply and biofuels as well as their possible land use change effects.

3.3.1. Vehicle

3.3.1.1. Vehicle Production

The estimation of the vehicle material composition (except battery, see <u>chapter 3.3.1.2.</u> and <u>Table 4</u> in ANNEX I: MAIN DATA) is mainly based on work from Graz University of Technology [Hausberger et al. 2018] and own work at JOANNEUM RESEARCH, especially on hydrogen storage tanks and electronics in vehicles [JOANNEUM RESEARCH 2022].

The energy demand for the basic vehicle manufacturing in a vehicle factory is estimated based on the VW Sustainability report [VW 2021]:

- Electricity: 1,060 kWh/vehicle
- Heat: 590 kWh/vehicle
- Natural gas: 420 kWh/vehicle.

The background data for vehicle production cover

- Share of material mix for vehicles (<u>Table 4</u> in ANNEX I: MAIN DATA) and hydrogen fuel cell & tank production (<u>Table 5</u> ANNEX I: MAIN DATA) to calculate the environmental effects of vehicle production. The H₂ pressure is 700 bar, the mass of the H₂-tank and-of-the fuel cell system is 276 kg.
- Materials (<u>Table 6</u> in ANNEX I: MAIN DATA) and primary energy for vehicle production.

3.3.1.2. Battery Production

On the basis of a recent literature review on environmental life cycle impacts of automotive batteries [Aichberger et al. 2020], the calculation of GHG emissions from battery manufacturing is done with the JOANNEUM RESEARCH in-house "JR Battery LCA-Tool" [Aichberger et al. 2020a], [Pucker-Singer et al. 2021].

The main processes in the LCA of automotive batteries are (Figure 10):

- Raw material mining and refining
- Grade material production
- Battery system manufacturing
- Battery use
- Reuse
- Recycling and 2nd life (Reuse)
- Transports.

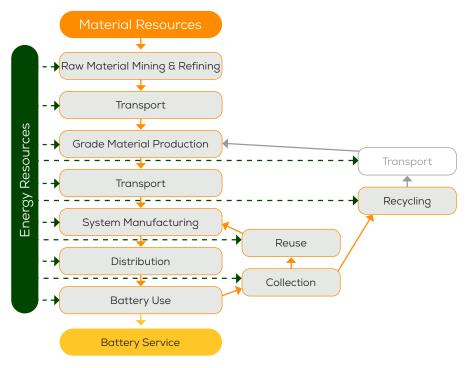
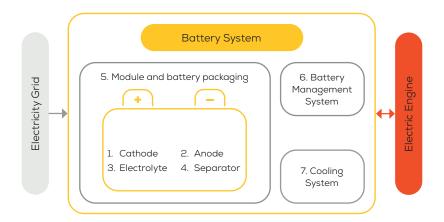
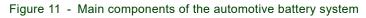


Figure 10 - System boundaries for automotive battery systems


The LCA for automotive battery system is calculated in the in-house battery LCA-Tool for the following two functional units


- Per kWh battery capacity, e.g. kg CO₂-eq./kWh
- Per km driven (assuming e.g. 57 kWh battery capacity and 240,000 km lifetime mileage),
 e.g. g CO₂-eq./km with a passenger vehicle

The modelling of the automotive battery system is done for the following seven main components Figure 11:

- 1. Cathode
- 2. Anode
- 3. Electrolyte
- 4. Separator
- 5. Module and battery packaging (pack, module and cell case)
- 6. Battery-Management-System (BMS)
- 7. Cooling (thermal) system.

The distribution of the mass to these components is shown in Figure 12.

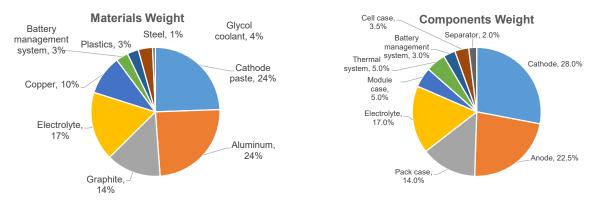


Figure 12 - Estimated average distribution of the mass of these components in the automotive battery system [JOANNEUM RESEARCH 2022]

The following main materials of the automotive battery system are considered in the LCA:

- Positive active material (incl. Lithium, Nickel and Cobalt)
- Aluminum
- Graphite
- Copper
- Lithium hexafluorophosphate (Electrolyte)
- Steel
- Polymer.

The LCA is done for batteries produced in Europe, USA and China separately, mainly based on the different electricity generation mix.

For the end-of-life phase of automotive batteries – material recycling or reuse as stationary application in a 2^{nd} life – less data are available. The battery recycling is currently tested in pilot and demo plants as a combination of mechanical and pyro- and hydrometallurgical processes. For the LCA modelling the following assumptions are made:

- Dismantling of the battery module with use of aluminium and plastics
- Dismantling of the battery cells with use of copper and aluminium
- Dismantling of the cathode with use of aluminium and
- Hydrometallurgical recycling of cobalt and nickel.

In the following Figures (Figure 13, Figure 14 and Figure 15) the main inputs and results from the LCA of automotive batteries produced in Europe, USA and China for 2020, 2030 and 2050 are shown.

In <u>Table 7</u> in ANNEX I: MAIN DATA the background data for batteries used in the tool are shown based on the LCA battery modelling for 2020, 2030 and 2050. The data used for the calculations are for 2022, which are based on the interpolation between 2020 and 2030.

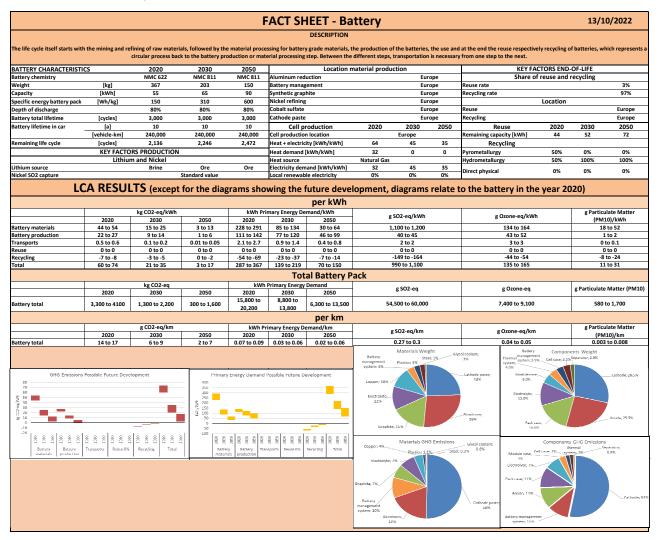


Figure 13 - LCA data and results of 'JR Battery LCA-Tool' for automotive batteries produced in Europe [JOANNEUM RESEARCH 2022]

					FACT SHE	ET - Batte	ry					13/10/2	2022
					C	DESCRIPTION							
The life cycle itself starts with	the mining and refi					terials, the production een the different steps				reuse respectively recycling of bat to the next.	tteries, whic	h represents a circ	ular process
BATTERY CHARACTERISTIC	5	2020	2030	2050		Location mater	rial production			KEY FAC	TORS END-	OF-LIFE	
Battery chemistry		NMC 622	NMC 811	NMC 811	Aluminum reduction			United	States		reuse and r		
Weight	[kg]	367	203		Battery management			United		Reuse rate			3%
Capacity	[kWh]	55	65	90	Synthetic graphite			United		Recycling rate			97%
Specific energy battery pack	[Wh/kg]	150	310		Nickel refining			United			Location		
Depth of discharge		80%	80%		Cobalt sulfate			United		Reuse			Europe
Battery total lifetime	[cycles]	3,000	3,000	3,000	Cathode paste			United		Recycling			Europe
Battery lifetime in car	[a] [vehicle-km]	10 240.000	10 240.000	10 240.000	Cell pro Cell production location	duction	2020	2030 ted States	2050	Reuse Remaining capacity [kWh]	2020	2030 52	2050
Remaining life cycle	[cycles]	2,136	2,246		Heat + electricity [kW		64	45	35	Recycling	44	52	12
Kemaining me cycle		RS PRODUCTION	2,240	2,472	Heat demand [kWh/k		32	43	0	Pyrometallurgy	50%	0%	0%
		n and Nickel			Heat source	wnj	32 Natural Gas	U	U	Hydrometallurgy	50%	100%	100%
Lithium source	c.c.iu	Brine	Ore	Ore	Electricity demand [k]	Wh/kWh]	32	45	35				
Nickel SO2 capture			Standard value		Local renewable elect		0%	0%	0%	Direct physical	0%	0%	0%
	LCA RE		cept for the o	diagrams s	howing the fu	ture developm	nent. diagrar	ns relat	e to the	battery in the year 2	2020)		
			·			per kWh	, 0						
		kg CO2-eq/kWh		kW	h Primary Energy Dem	and/kWh						g Particulate	Matter
	2020	2030	2050	2020	2030	2050		2-eq/kWh		g Ozone-eq/kWh		- (PM10)/F	
Battery materials	53 to 63	19 to 27	6 to 12	249 to 311	97 to 140	38 to 64		00 to 1,200		151 to 176		19 to 5	
Battery production	28 to 33	18 to 25	10 to 19	130 to 162	110 to 158	87 to 147		0 to 55		54 to 63		1 to 2	
Transports Reuse	1.7 to 2 0 to 0	0.5 to 0.7 0 to 0	0.1 to 0.2 0 to 0	6.4 to 8 0 to 0	2.9 to 4.1 0 to 0	1.4 to 2.3 0 to 0		9 to 21 0 to 0		23 to 27 0 to 0		0.7 to 1 0 to 0	
Recycling	-9 to -11	-4 to -6	-1 to -2	-60 to -75	-27 to -39	-9 to -14		5 to -171		-51 to -60		-9 to -2	
Total	73 to 87	34 to 48	16 to 30	325 to 405	183 to 263	118 to 198		00 to 1,100		176 to 206		12 to 3	
						Battery Pack							
	2020	kg CO2-eq 2030	2050	2020	kWh Primary Energy D 2030	emand 2050	g	SO2-eq		g Ozone-eq		g Particulate Ma	tter (PM10)
Battery total	4,000 to 4,800	2,100 to 3,000	1,400 to 2,700	17,900 to	11,500 to 16,600	10,600 to 17,800	56.50	0 to 62,000		9,700 to 11,300		650 to 1,	750
•	· ·	· ·	· · ·	22,300	· · ·	per km		•				-	
		g CO2-eq/km		Lat.	Vh Primary Energy Den		1					g Particulate	Matter
	2020	2030	2050	2020	2030	2050	g St	02-eq/km		g Ozone-eq/km		(PM10)/	
Battery total	17 to 20	9 to 13	6 to 11	0.08 to 0.1	0.05 to 0.07	0.04 to 0.08	0.2	8 to 0.31		0.05 to 0.06		0.003 to 0	.009
						Battery management system: 4%-	Materials Weigh Steel	nt Glyco	l coolant; 3%	Battery Compone management system; 3.5% Cell case; 3.5% 5 Thermal	nts Weight eparator; 2.0%		
100	Possible Future Develo	pment	500	ergy Demand Poss	ible Future Developmen	Copper; 10	re 🖉		Cathode paste; 24%	system;Module case; 4.0% 5.0%		Cathode; 28.5%	
			400 400 200 100 -100				e; phite; 16%		Aluminum; 26%	Electrolyte; 12.0% Pack case; 16.0%		Anode; 25.5%	
Retary Battary novaetad production	See	 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	Battery	SX S	C C C C C C C C C C C C C C C C C C C	Tetal Copper, 41 Electro Complete: 7%	Materials GHG	Emissions Stock C	Clycol coolerr 12% 0.5% Cathode p 49%	Modula case, Cell (see, 2%, Taylor) .98 Flor travite; 6% Peck case: 11% Anode; 11%		15 Generator; 0.7% Catheole; 59%	

Figure 14 - LCA data and results of 'JR Battery LCA-Tool' for automotive batteries produced in USA [JOANNEUM RESEARCH 2022]

				F	ACT SHEE	T - Batter	.y					13/10	/2022
					DES	CRIPTION							
The life cycle itself starts with	the mining and refini				attery grade materials ssing step. Between th					e respectively recycling of batteri	ies, which rep	presents a circula	ar process bad
ATTERY CHARACTERISTICS attery chemistry	1	2020 NMC 622	2030 NMC 811	2050 NMC 811	Aluminum reduction	Location mat	erial production		ina		CTORS END- f reuse and i		
/eight	[kg]	367	203		Battery management				ina	Reuse rate	reuse anu i	recycling	3%
apacity	[kWh]	55	65	90	Synthetic graphite				ina	Recycling rate			97%
pecific energy battery pack	[Wh/kg]	150	310	600	Nickel refining			Ch	ina		Location		
epth of discharge	1 / 2/	80%	80%	80%	Cobalt sulfate			Ch	ina	Reuse			Europe
lattery total lifetime	[cycles]	3,000	3,000	3,000	Cathode paste			Ch	ina	Recycling			Europe
Battery lifetime in car	[a]	10	10	10	Cell pro	duction	2020	2030	2050	Reuse	2020	2030	2050
	[vehicle-km]	240,000	240,000	240,000	Cell production location			China		Remaining capacity [kWh]	44	52	72
temaining life cycle	[cycles]	2,136	2,246	2,472	Heat + electricity [kW	h/kWh]	64	45	35	Recycling			
	KEY FACT	ORS PRODUCTION			Heat demand [kWh/k	Wh]	32	0	0	Pyrometallurgy	50%	0%	0%
	Lithiu	um and Nickel			Heat source		Natural Gas			Hydrometallurgy	50%	100%	100%
Lithium source		Brine	Ore		Electricity demand [k\		32	45	35	Direct physical	0%	0%	0%
Nickel SO2 capture			Standard value		Local renewable elect	ricity	0%	0%	0%	Direct physical	0,0	0,0	070
	LCA RE	SULTS (exc	cept for the d	iagrams sho	wing the futu	re developm	ent, diagrai	ms relate	to the	battery in the year 2	020)		
						r kWh							
-	-	kg CO2-eq/kWh			Primary Energy Dema			SO2-eq/kWh		g Ozone-eq/kWh			ate Matter
	2020	2030	2050	2020	2030	2050							0)/kWh
Battery materials	82 to 93	32 to 39	11 to 17	265 to 331	103 to 149	40 to 69	1,	200 to 1,300		181 to 209			to 53
Battery production	40 to 46	33 to 41	15 to 24	126 to 157	105 to 152	78 to 134		76 to 83 22 to 24		55 to 63 26 to 30			to 3 to 2
Fransports Reuse	1.9 to 2.2 0 to 0	0.6 to 0.7 0 to 0	0.1 to 0.2 0 to 0	7.2 to 8.9 0 to 0	3.2 to 4.6 0 to 0	1.5 to 2.6 0 to 0		0 to 0		26 to 30 0 to 0			to 2 to 0
Recycling	-22 to -25	-9 to -11	-2 to -3	-74 to -92	-31 to -45	-10 to -17	-	196 to -213		-72 to -83			to -25
Total	102 to 116	57 to 71	24 to 38	325 to 405	180 to 260	109 to 189		100 to 1,200		190 to 220			to 33
						attery Pack		,					
		1					1					1	
	2020	kg CO2-eq 2030	2050	2020	Vh Primary Energy De 2030	2050	-	g SO2-eq		g Ozone-eq		g Particulate	Matter (PM10
Battery total	5,600 to 6,400	3,600 to 4,500	2,100 to 3,400	17,800 to 22,300	11,300 to 16,400	97,9 to 17,000	60,	500 to 66,000		10,400 to 12,100		740 to	5 1,800
					p	er km							
		g CO2-eq/km	I.		Primary Energy Dema		g	SO2-eq/km		g Ozone-eq/km			ate Matter
	2020	2030	2050	2020	2030	2050	-			0.05 to 0.06			0)/km
Battery total	23 to 27	15 to 18	9 to 14	0.08 to 0.09	0.05 to 0.07	0.04 to 0.07		0.3 to 0.33				0.004	to 0.009
GHG Emissions P 140 120	ossible Future Developi	ment	Primary Energ	y Demand Possible Fu	iture Development	Battery management system: 4% Copper; 10%	Materials Weight Steel; 13 Plastics; 3%		ant; ode paste; 24%	Battery management system; 2.5% Thermal system; 4.0% Module case; 5.0%	ator; 2.0%	Cathode; 28.5%	
1000 Feedback	7007 7007 Transpurts Franspurts	6 600 6 700 7 7014	400 400 400 400 400 400 400 400 400 400		00 <u>00</u> 00 00 00 00 00 <u>00</u> 00 00 00 2006 Recycling Total	Bictrolyte: 12% Graphite Copper, 2%	Materials GHG Er	2	linum; 6% lycnl mobini; 0.3%	Recreations of the second seco	G Emissions	node; 25.5%	
materials production	<u> 1 1</u>		materials pro	duction	1 1		Vtc 4%		Cathode paster 41%	Module care, ^{Cel} l care 3% yrtem.2 % Electrolyte, 4% Pack care; 18% Battry mongement system; 13%		595 Cathooley 4795	

3.3.1.3. Vehicle Operation

The energy consumption values for vehicle operation are provided by the stakeholders ADAC, ÖAMTC and Green NCAP. In cases where no CH_4 and N_2O emissions for HEV, ICE and PHEV are provided, the default data from the LCA Expert Tool 2.1 [Jungmeier et al 2022] are used.

3.3.1.4. Vehicle Maintenance

The environmental effects from the maintenance of the vehicle during operation are considered (<u>Table 8</u> in ANNEX I: MAIN DATA), which are

- Tyres
- Spare/replacement parts (assumption: annually 0.5% of vehicle mass per year)
- Combustion engine motor oil for ICE, HEV and PHEV and
- Urea (diesel exhaust fluid) for diesel ICE.

Table 9 in ANNEX I: MAIN DATA shows the GHG emissions and PED relevant for maintenance.

3.3.1.5. Vehicle End-of-Life

For the environmental effects in the end-of-life phase of the vehicles the following issues are considered:

- The energy demand for recycling to recover the secondary material is assumed to be about 20% of the energy demand of the vehicle manufacturing
- A credit for the substitution of the materials: in average for all materials it is assumed that 1 t of secondary material substitutes for 0.15 t of primary material, e.g. for steel this is significantly higher and for electronics significantly lower
- The GHG emissions and primary energy demand of end-of-life are not depending on the year, they are estimated for the years between 2030 - 2035.

The end-of-life for batteries is calculated in much greater detail, directly taken form the 'JR Battery LCA-Tool' [Aichberger et al. 2020] (see <u>chapter 3.3.1.2.</u>).

3.3.2. Supply of Fuels and Energy

3.3.2.1. Hydrogen Production

In <u>Table 10</u> in ANNEX I: MAIN DATA the main data for hydrogen production via electrolysis and natural gas steam reforming are shown. The oxygen and heat from electrolysis are not used. The electricity demand for the compression from 30 bar to 800 bar and cooling of hydrogen is 2.7 kWh/kg H₂, which is based on the ionic compressor IC 90 of Linde Gas.

3.3.2.2. Biofuel Production

In <u>Table 11</u> in ANNEX I: MAIN DATA the main data for vegetable oil production are given. The co-produced animal feed substitutes soy feed. In <u>Table 12</u> in ANNEX I: MAIN DATA the main data for FAME (biodiesel) production are shown. The coproduced glycerin substitutes synthetically produced glycerin and the coproduced potassium substitutes for synthetic fertilizer. In <u>Table 13</u> in ANNEX I: MAIN DATA the main data for bio-ethanol production are shown. The coproduced animal feed substitutes soy feed.

3.3.2.3. Land Use Change of Biofuels

The background data for land use change for biomass resources are shown in <u>Table 14</u> in ANNEX I: MAIN DATA. The possible CO_2 emissions of iLUC are not considered in the analysis (see also <u>chapter</u> <u>2.6.2.</u>), but for transport systems using biofuels an additional information on GHG emissions from iLUC is given in the Fact Sheet of LCA Tool 2.1 [Jungmeier et al. 2022].

3.3.2.4. Supply of Fuels and Electricity

The background data for the supply of energy carriers to the vehicle are:

- Heating values of fossil and biogenic resources (<u>Table 15</u> in ANNEX I: MAIN DATA)
- Heating values of fuels (<u>Table 16</u> in ANNEX I: MAIN DATA)
- Supply of fuels to the filling station (<u>Table 17</u> in ANNEX I: MAIN DATA).
- Supply of electricity to the charging station incl. distribution (<u>Table 18</u> and <u>Table 19</u> in ANNEX I: MAIN DATA)⁴, where 'electr. / RES EU' is 25% hydro, 50% wind and 25% PV
- Supply of hydrogen to the filling station (<u>Table 20</u> in ANNEX I: MAIN DATA).

^{4 &#}x27;Nuclear' primary energy is included here under "fossil" primary energy, based on the source used [Hill et al. 2020]

The charging losses (outside of the vehicle) for charging of BEV and PHEV are assumed with 2% [Green NCAP 2022].

These background data are calculated with the specified foreground data using LCA [JOANNEUM RESEARCH 2022], [Jungmeier et al. 2019].

4. MAIN FINDINGS AND CONCLUSIONS

The main findings of the environmental assessment using LCA applied on the about 30,000 different vehicles available on the European market are:

- The main differences between the vehicles are due to
 - $\hfill\square$ The mass of the vehicle
 - □ The battery capacity
 - □ The energy demand per driven kilometre.
- The environmental effects of BEV and PHEV depend on the electricity mix of the considered country.
- The production of the battery has a significant influence on the GHG emissions and primary energy demand of the BEV and PHEV.
- The GHG emissions and primary energy demand of ICE are dominated by the operation of the vehicle.
- In general, the GHG emissions and primary energy savings from substituting for secondary materials at the end-of-life are quite small in the overall life cycle. However, due to the future recycling of batteries, BEV and PHEV are able to provide more secondary material than ICE.

ANNEX I: MAIN DATA

 Table 1
 Foreground data for land use change for biofuels

 [JOANNEUM RESEARCH 2022]

Share of direct land use change (LUC) for biofuels	2021	2030	2050
Sugar cane (from pasture)	10%	10%	10%
Soja beans (from pasture)	10%	10%	10%
Palm oil (from trop. forest)	10%	10%	10%

Table 2 Foreground data for biomass mix for biofuels [JRC 2020] and [JOANNEUM RESEARCH 2022]

Country (EU 28)	2021	2030	2050
FAME		· · · · · · · · · · · · · · · · · · ·	
Rape seed oil	53%	53%	53%
Used cooking oil	22%	22%	22%
Palm oil	20%	20%	20%
Soja oil	5%	5%	5%
EtOH			
Wheat&maize	68%	60%	54%
Sugar beet	21%	21%	21%
Sugar cane	7%	6%	5%
Wood	2%	7%	10%
Straw	2%	7%	10%

2020	Europe 28	Austria	Belgium	Bulgaria	Switzerland	Cyprus	Czech Republic	Germany	Denmark	Estonia	Spain	Finland	France	Greece	Croatia	Hungary	Irland	Italy	Lithuania	Luxembourg	Latvia	Malta	Netherlands	Poland	Portugal	Romania	Sweden	Slovenia	Slovakia	United Kingdom
		AT			∛ CH		CZ			EE	ES	FI		GR			IE	ΙТ		ے LU		мт	₽ NL	PL	≏ PT	≌ RO	ຶ SE	∽ SI		UK
Coal	16.8%	3.5%	0.0%	34.0%	0.0%	0.0%	47.1%	20.7%	9.0%	77.4%	12.3%	7.5%	0.9%	25.7%	15.1%	4.8%	14.3%	12.5%	0.0%	0.0%	1.0%	0.0%	12.1%	67.2%	4.1%	21.1%	0.4%	23.0%	10.7%	2.7%
Oil	0.6%	0.2%	0.7%	0.1%	0.0%	3.6%	0.0%	0.7%	0.2%	0.0%	0.6%	0.1%	0.1%	5.7%	0.7%	0.0%	0.0%	2.5%	0.0%	0.0%	0.1%	0.0%	0.0%	0.1%	3.1%	0.4%	0.2%	0.0%	0.1%	0.9%
Natural gas	15.4%	14.7%	30.2%	6.1%	1.3%	64.2%	3.5%	16.3%	3.1%	2.1%	12.6%	8.5%	3.6%	18.8%	23.5%	24.1%	29.5%	37.4%	57.4%	61.8%	27.9%	84.0%	37.5%	9.6%	18.2%	10.9%	2.5%	1.4%	5.3%	24.8%
Nuclear	21.2%	0.0%	29.2%	33.0%	33.5%	0.0%	34.9%	6.8%	0.0%	0.0%	19.5%	36.2%	61.1%	0.0%	0.0%	56.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	3.0%	0.0%	0.0%	21.8%	28.7%	33.5%	57.0%	16.3%
Biomass	7.2%	5.9%	5.6%	2.5%	1.2%	2.1%	2.8%	7.6%	24.9%	9.2%	3.5%	21.4%	2.8%	1.9%	2.6%	6.9%	3.4%	7.6%	16.7%	5.2%	10.4%	0.5%	12.4%	7.7%	6.5%	1.9%	10.9%	3.2%	6.6%	14.0%
Hydro	11.3%	58.3%	0.7%	9.6%	53.8%	0.0%	3.5%	3.4%	0.0%	0.4%	11.5%	16.1%	11.2%	10.6%	43.2%	0.7%	2.7%	16.4%	7.3%	3.9%	46.4%	0.0%	0.0%	1.5%	35.5%	23.9%	41.7%	29.1%	15.0%	1.4%
Wind	20.0%	12.1%	25.7%	8.5%	0.5%	14.5%	3.8%	28.4%	60.4%	9.1%	25.7%	10.1%	13.2%	22.3%	8.3%	4.5%	45.5%	10.1%	17.6%	20.9%	14.1%	0.1%	30.3%	11.6%	27.8%	16.2%	15.3%	2.5%	2.1%	34.8%
PV	7.3%	5.1%	8.0%	6.2%	4.9%	15.6%	4.4%	11.8%	2.4%	1.8%	14.3%	0.0%	6.8%	14.9%	6.6%	2.9%	4.5%	13.4%	1.0%	8.1%	0.0%	15.4%	4.6%	2.2%	4.8%	3.7%	0.2%	7.2%	3.0%	4.2%
Waste	0.0%	0.0%	0.0%	0.0%	3.4%	0.0%	0.0%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Other	0.1%	0.1%	0.0%	0.0%	0.0%	0.0%	0.1%	4.5%	0.1%	0.0%	0.1%	0.1%	0.3%	0.0%	0.0%	0.0%	0.0%	0.1%	0.0%	0.1%	0.1%	0.0%	0.1%	0.1%	0.0%	0.1%	0.1%	0.1%	0.1%	0.9%
SUM	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
2030	EU28	AT	BE	BG	СН	CY	CZ	DE	DK	EE	ES	FI	FR	GR	HR	HU	IE	IT	LT	LU	LV	MT	NL	PL	PT	RO	SE	SI	SK	UK
Coal	10.1%	0.0%	0.0%	22.9%	0.0%	0.0%	40.0%	16.3%	0.9%	71.5%	1.7%	0.7%	0.0%	18.9%	15.2%	0.8%	9.1%	0.6%	0.0%	0.0%	0.8%	0.0%	3.7%	47.3%	0.0%	9.9%	0.0%	16.3%	8.1%	1.3%
Oil	0.6%	0.0%	0.2%	0.0%	0.0%	2.0%	0.0%	0.5%	0.5%	0.0%	1.2%	0.0%	0.2%	0.2%	1.2%	0.0%	0.0%	2.4%	0.0%	0.0%	0.2%	0.0%	0.0%	0.2%	1.9%	0.2%	0.2%	0.0%	0.3%	0.7%
Natural gas	12.5%	8.9%	42.2%	1.5%	2.0%	60.0%	5.1%	16.7%	2.4%	0.5%	1.0%	8.6%	1.8%	8.7%	15.3%	12.2%	15.7%	36.4%	39.6%	63.7%	21.0%	80.8%	40.5%	16.7%	12.9%	5.6%	1.4%	1.6%	9.1%	14.6%
Nuclear	18.3%	0.0%	0.0%	32.2%	30.0%	0.0%	32.9%	0.0%	0.0%	0.0%	18.4%	29.5%	54.3%	0.0%	0.0%	66.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2.8%	0.0%	0.0%	29.2%	25.4%	31.3%	52.9%	15.8%
Biomass	9.1%	8.4%	6.9%	5.6%	1.5%	3.4%	4.1%	7.1%	22.7%	10.6%	5.8%	31.2%	3.8%	3.6%	3.5%	6.8%	5.4%	9.2%	28.2%	6.0%	14.6%	0.7%	12.4%	9.9%	7.5%	3.2%	12.5%	4.8%	9.1%	15.4%
Hydro	10.7%	53.0%	0.8%	9.2%	51.0%	0.0%	3.4%	3.6%	0.0%	0.4%	10.9%	16.3%	10.6%	9.5%	35.9%	0.6%	2.5%	17.1%	6.6%	3.2%	43.0%	0.0%	0.0%	1.5%	34.9%	21.7%	35.9%	28.4%	12.5%	1.3%
Wind	27.1%	19.1%	37.8%	17.1%	1.0%	14.4%	8.1%	36.6%	71.4%	12.3%	34.2%	13.5%	18.7%	35.0%	13.2%	6.7%	55.9%	13.7%	24.9%	18.0%	20.4%	0.2%	34.9%	19.0%	33.2%	25.5%	24.0%	3.6%	2.8%	42.1%
PV	11.4%	10.4%	12.0%	11.5%	8.0%	20.2%	6.4%	16.2%	2.0%	4.6%	26.7%	0.0%	10.2%	24.0%	15.7%	6.8%	11.3%	20.6%	0.7%	9.1%	0.0%	18.2%	5.5%	5.4%	9.6%	4.7%	0.6%	14.0%	5.2%	6.6%
Waste	0.0%	0.0%	0.0%	0.0%	3.1%	0.0%	0.0%	0.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Other	0.2%	0.2%	0.1%	0.0%	3.4%	0.0%	0.0%	2.1%	0.1%	0.1%	0.1%	0.2%	0.4%	0.1%	0.0%	0.1%	0.1%	0.1%	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2.2%
SUM	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

 Table 3
 Foreground data for electricity mixes 2020, 2030 and 2050 [Hill et al. 2020], [IINAS 2021] for Germany (DE)

Green NCAP - February 2024

2050	Europe 28	Austria	Belgium	Bulgaria	Switzerland	Cyprus	Czech Republic	Germany	Denmark	Estonia	Spain	Finland	France	Greece	Croatia	Hungary	Irland	Italy	Lithuania	uxembourg	Latvia	Malta	Netherlands	Poland	Portugal	Romania	Sweden	Slovenia	Slovakia	United Kingdom
	ш EU28	лт		BG		СҮ	cz		DK		ES	FL	FR	GP	цр	HU	IE	ΙТ			LV	мт	_	PL	PT		SE		SK	
	EUZO	AI	DE	DG	СП	01	62	DE	DR		LO	ГІ	ГЛ	GK	пк	по				LU	LV			F L	ГІ	κυ	JE	31	SN	UK
Coal	0.8%	0.0%	0.0%	2.9%	0.0%	0.0%	2.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%	2.0%	4.7%	0.0%	1.6%	0.0%	0.0%	0.4%	0.9%
Oil	0.2%	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	0.1%	0.1%	0.0%	0.8%	0.0%	0.2%	0.0%	0.6%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.7%	0.2%	0.0%	0.0%	0.0%	0.1%
Natural gas	11.2%	8.3%	39.3%	5.3%	2.0%	31.4%	13.8%	2.4%	16.0%	2.9%	1.3%	7.0%	0.8%	2.2%	12.9%	16.3%	7.8%	26.9%	6.3%	64.9%	11.4%	84.4%	37.8%	16.0%	2.8%	7.2%	0.6%	7.6%	11.2%	3.3%
Nuclear	14.6%	0.0%	0.0%	36.3%	30.0%	0.0%	51.4%	0.0%	0.0%	0.0%	0.0%	25.9%	31.0%	0.0%	0.0%	52.7%	0.0%	0.0%	51.0%	0.0%	0.0%	0.0%	0.0%	21.2%	0.0%	24.4%	23.5%	39.3%	46.4%	24.0%
Biomass	8.1%	10.9%	8.5%	7.9%	1.3%	2.7%	11.7%	4.5%	14.0%	8.0%	4.2%	30.7%	2.2%	3.1%	5.1%	8.9%	4.7%	12.7%	11.6%	4.7%	12.9%	3.2%	13.2%	11.3%	10.4%	4.9%	7.1%	6.3%	12.2%	4.6%
Hydro	8.3%	37.5%	0.7%	8.0%	50.0%	0.0%	3.3%	2.7%	0.0%	1.2%	8.6%	15.5%	9.2%	8.4%	30.6%	0.4%	2.0%	11.0%	3.6%	1.9%	29.1%	0.0%	0.0%	1.5%	26.4%	18.2%	29.7%	23.2%	11.5%	0.9%
Wind	42.6%	29.8%	40.5%	26.8%	3.0%	26.3%	10.2%	64.9%	68.5%	66.2%	56.0%	20.8%	41.2%	51.9%	25.3%	12.9%	76.8%	26.1%	23.6%	21.5%	41.3%	1.1%	40.3%	39.3%	50.7%	38.4%	38.5%	7.7%	10.6%	57.1%
PV	13.4%	13.5%	10.8%	12.6%	10.0%	37.2%	7.0%	24.0%	1.4%	5.7%	29.1%	0.0%	14.0%	33.3%	24.4%	8.8%	8.7%	22.9%	3.9%	7.0%	5.0%	11.3%	6.4%	5.7%	9.0%	5.1%	0.5%	15.8%	7.6%	4.9%
Waste	0.0%	0.0%	0.0%	0.0%	1.3%	0.0%	0.0%	0.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Other	0.9%	0.0%	0.2%	0.2%	2.4%	2.2%	0.1%	0.5%	0.0%	16.0%	0.0%	0.1%	1.4%	0.1%	0.1%	0.0%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.3%	0.3%	0.0%	0.0%	0.1%	0.1%	0.1%	4.2%
SUM	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100% 1	100%	100%	100%	100%	100%	100%	100%	100% 1	00%	100%

Propulsion		ICE			PHEV		BEV	HFC
Fuel	Petrol & blending, bio-ethanol	Diesel & blending, biodiesel	CNG & blending, CRG	Petrol & electricity	Diesel & electricity	CNG & electricity	Electricity	Hydrogen (H ₂)
Steel	50.4%	49.4%	52.1%	50.3%	49.4%	51.7%	44.6%	44.4%
Cast iron	8.0%	9.4%	7.9%	9.8%	11.1%	9.7%	5.4%	5.3%
Aluminium	10.6%	11.9%	10.5%	9.7%	10.9%	9.6%	16.1%	16.1%
Glas	2.4%	2.2%	2.3%	2.2%	2.0%	2.1%	2.4%	2.4%
Paint	0.4%	0.4%	0.4%	0.4%	0.3%	0.4%	0.4%	0.4%
Plastic	12.1%	11.0%	10.8%	11.0%	10.0%	10.1%	11.6%	12.0%
Rubber	3.9%	3.7%	3.9%	3.6%	3.4%	3.5%	4.0%	4.0%
Oil	0.8%	0.9%	0.8%	0.8%	0.9%	0.8%	0.4%	0.4%
Copper	2.3%	2.3%	2.3%	2.9%	2.9%	2.9%	3.7%	3.6%
Non ferrous metals	0.3%	0.4%	0.3%	1.1%	1.2%	1.1%	1.6%	1.6%
Electronic	4.9%	4.7%	4.9%	4.7%	4.4%	4.6%	5.7%	5.7%
Textiles	3.9%	3.7%	3.9%	3.6%	3.4%	3.5%	4.1%	4.0%
Carbon fiber	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
SUM	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

Table 4 Background data for material mix of vehicles (without battery and fuel cell) based on [Hausberger et al. 2018] and [JOANNEUM RESEARCH 2022]

Table 5 Background data for hydrogen fuel cell (hfc) and H₂ tank system [JOANNEUM RESEARCH 2022]

	Tank & HFC
Steel	19.6%
Aluminium	8.9%
Plastic	7.5%
Electronic	0.9%
Copper	5.3%
Graphit	6.2%
CFK	51.5%
SUM	100.0%

Table 6 Background data for materials for vehicle production

Materials for vehicle production	GHG	PED	PED _{fos}
2021	[g CO ₂ -eq./kg]	[kWh/kg]	[kWh/kg]
Steel	2,470	8.9	7.8
Cast iron	900	3.5	3.2
Aluminium	12,050	53.2	47.6
Glas	1,130	3.3	3.2
Paint	5,680	28.0	21.5
Plastic	3,610	8.6	7.8
Rubber	3,300	9.9	9.5
Oil	1,420	13.3	13.1
Copper	3,610	11.9	11.0
Non ferrous metals	7,670	30.3	26.3
Electronic	36,630	133.4	120.2
Textiles	24,250	75.2	69.2
Carbon fiber	18,940	90.2	83.1

[JOANNEUM RESEARCH 2022]

Table 7 Background data for batteries interpolated for 2022 based on 2020 and 2030 [JOANNEUM RESEARCH 2022]

Li-lon battery	Gre	enhouse C	Sas Emiss	ions	Primary Energy Demand							
2022	CO ₂	CH₄	N ₂ O	CO ₂ -eq.	Fossil	Renew.	Other	Sum				
	[kg/kWh]	[kg/kWh]	[kg/kWh]	[kg/kWh]	[kWh/kWh]	[kWh/kWh]	[kWh/kWh]	[kWh/kWh]				
Production												
CN	111	0.20	0.00	119	359	29	14	403				
EU	60	0.15	0.00	65	228	66	57	351				
US	73	0.17	0.00	80	294	41	56	391				
MIX	77	0.17	0.00	84	277	51	44	372				
End-of-Life												
CN	-20	-0.02	0.00	-21	-70	-4	0	-74				
EU	-6	0.00	0.00	-7	-27	-19	-9	-55				
US	-9	-0.01	0.00	-9	-39	-15	-6	-61				
МІХ	-11	-0.01	0.00	-11	-42	-14	-6	-62				

Table 8 Background data for maintenance [HEV values represented by ICE]

Maintenance		ICE		PHEV		BEV	HFC	
		Petrol	Diesel	CNG	Petrol & electricity	Diesel & electricity	Electricity	Hydrogen (H ₂)
Tyres	[kg/KFZ a]	19.2	19.2	19.2	19.2	19.2	19.2	19.2
Engine oil	[kg/1000 km]	0.5	0.5	0.5	0.5	0.5		
Spare parts	[kg/KFZ a]	6.4	6.8	6.4	7.0	7.4	8.0	7.0
Urea	[kg/1000 km]		1.5			0.8		

Table 9 Background data for maintenance

[JOANNEUM RESEARCH 2022]

Maintenance	GHG	PED _{tot}	PED _{fos}
Maintenance	[g CO ₂ -eq./kg]	[kWh/kg]	[kWh/kg]
Tyres	3,300	9.9	9.5
Engine oil production	1,417	13.3	13.1
Engine oil use	3,172	-	-
Spare/replacement parts	5,038	19.7	17.6
Urea production	278	2.3	2.2
Urea use (CO ₂ only)	250	-	-

Table 10 Background data for hydrogen production via low temperature electrolysis (PEM or alkaline) and natural gas steam reforming based on [JOANNEUM RESEARCH 2022] and [BioGrace 2015]

		Electrolyses	Steam reforming
Output			
H ₂ 30 bar	[MWh]	1	1
Input			
Electricity	[MWh]	1.43	
Natural gas	[t]		0.086

Table 11 Background data for vegetable oil production

		Rape seed	Soy bean	Palm oil
Output				
Vegetable oil	[MWh]	1	1	1
Animal feed	[t]	0.13	0.22	
Input				
Raw material	[t]	0.25	0.32	0.65
Electricity	[MWh]	11.10	33	0*
Heat	[MWh]	50	160	0*
Fuller's earth	[kg]	0.59	0.59	0.002
Phosphoric acid	[kg]	0.10	0.11	0.001
Hexane	[kg]	0.25	0.11	0

based on [JOANNEUM RESEARCH 2022] and [BioGrace 2015]

* Provided internally by CHP plant from processing residues

Table 12 Background data for FAME (biodiesel) production

		Amount
Output		
FAME	[MWh]	1.00
Glycerine	[kg]	10.00
Potassium (as fertilizer)	[kg]	0.64
Input		
Vegetable oil	[t]	0.10
Electricity	[kWh]	8.10
Heat	[kWh]	66.10
Methananol	[kg]	11.40
Potassium hydroxide	[kg]	1.00
Sulfuric acid	[kg]	1.00
Phosphoric acid	[kg]	0.30
NaOH	[kg]	0.70
Activated carbon	[kg]	0.10
N ₂ (liquid)	[kg]	0.20

based on [JOANNEUM RESEARCH 2022] and [BioGrace 2015]

Table 13 Background data for bioethanol production

			Maize (corn)	Sugar beet	Sugar cane	Wood	Straw
Output							
Bio-ethanol	[MWh]	1.00	1.00	1.00	1.00	1.00	1.00
Animal feed (DDGS)	[kg]	131.00	121.00	78.00			
Input							
Raw material	[t]	0.42	0.55	1.62	1.97		0.63
Electricity	[kWh]	64.00	62.00	47.00			
Heat	[kWh]	450.00	436.00	614.00			
NaOH	[kg]	0.30	0.30	0.30			
Ammonia (25%)	[kg]	0.90	0.90	1.10		19.00	12.00
Sulfuric acid	[kg]	0.30	0.30	0.40		13.00	5.00
Urea	[kg]	0.10	0.10	0.10			
Molasses 880% DM)	[kg]					9.00	6.00
Corn Steep Liquor (CSL)	[kg]					25.00	22.00
Diammoniahosphate (NH ₄) ₂ HPO	₄ [kg]					3.00	3.00

based on [JOANNEUM RESEARCH 2022], [BioGrace 2015]

Table 14 Background data for direct and indirect land use change (LUC) for biomass resources (based on [EU 2009] and [EU 2015])

iLUC [.]	[g CO ₂ /MJ]	[g CO ₂ /kWh]
Bio-ethanol (wheat, maize)	12	43
Bio-ethanol (sugar beet)	13	47
Bio-ethanol (sugar cane)	17	61
FAME/HVO (rape seeds)	33	119
FAME/HVO (soja beans)	55	198
FAME/HVO (palm oil)	66	238

dLUC [.]	[kg CO₂/ha]
Sugar cane (grassland)	2,576
Soja beans(grassland)	2,825
Palm oil (trop. forest)	28,441
	[g CO ₂ /kWh]
EtOH / sugar cane	68
FAME / palm oil	804
FAME / soja oil	330
HVO / palm oil	805
HVO / soja oil	331

* in brackets is the previouse use of the land

Table 15 Background data for lower heating values of fossil and biogenic resources [JOANNEUM RESEARCH 2022]

Fossil Resources	[kWh/kg]	[g CO ₂ /kWh]
Coal	7.6	
Raw oil	11.1	
Natural gas		10.0

Biomass resourcees	[kWh/kg]	Water content
Wood	3.7	25%
Maize	2.8	35%
Wheat	3.9	14%
Sugar beet	0.8	73%
Rape seeds	6.8	9%
Soy beans	4.7	13%
Palm oil fruits	6.2	9%
Sugar cane	2.5	40%
Maize sillage	1.5	64%
Straw	3.9	14%
Waste cooking oil	10.3	0%

Background data for heating values of fuels [JOANNEUM RESEARCH 2022] comparable to [EU 2018]

	[kWh/kg]	[kWh/l]	[kWh/Nm³]
CNG	13.9		10.0
Diesel B7		9.7	
Petrol E10		8.5	
H ₂	33.3		

Table 17 Background data for the supply of fossil fuels to the filling station

[JOANNEUM RESEARCH 2022]

Supply to filling station	g CO₂-eq/kWh															
Fuels	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
Diesel B7	65.6	65.5	65.5	65.4	65.4	65.3	65.3	65.2	65.2	66.1	67.0	67.8	68.7	69.6	70.5	71.3
Petrol E10	87.7	87.1	86.6	86.0	85.5	84.9	84.3	83.8	83.2	83.9	84.5	85.2	85.8	86.4	87.1	87.7
CNG	40.3	40.5	40.7	40.8	41.0	41.2	41.3	41.5	41.7	42.5	43.3	44.2	45.0	45.8	46.6	47.5

Supply to filling station		kWh fossil/kWh														
Fuels	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
Diesel B7	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.12	1.13	1.13	1.13	1.14	1.14	1.14	1.15
Petrol E10	1.23	1.23	1.22	1.22	1.22	1.21	1.21	1.21	1.20	1.21	1.21	1.21	1.21	1.22	1.22	1.22
CNG	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.16	1.16	1.16	1.16

Supply to filling station		kWh renew./kWh														
Fuels	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
Diesel B7	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140
Petrol E10	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140
CNG	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001

Supply to filling station		kWh total/kWh														
Fuels	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
Diesel B7	1.27	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.27	1.27	1.27	1.28	1.28
Petrol E10	1.36	1.36	1.36	1.35	1.35	1.35	1.35	1.34	1.34	1.34	1.35	1.35	1.35	1.35	1.36	1.36
CNG	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.16	1.16	1.16	1.16	1.16

Table 18 Background data for the supply of electricity to the charging station Part I

[JOANNEUM RESEARCH 2022] based on electricity mix defined in foreground data5

Supply to charging station								g CO ₂ -e	q./kWh	ו						
Electricity	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
Europe 28	402	384	365	347	328	310	291	273	254	246	238	230	223	215	207	199
Austria	267	254	242	230	218	206	194	181	169	165	161	158	154	150	146	142
Belgium	188	198	207	217	226	235	245	254	263	261	258	256	253	251	248	246
Bulgaria	654	622	590	558	526	495	463	431	399	385	370	355	341	326	311	296
Switzerland	53	53	54	55	55	56	57	58	58	57	56	55	54	53	52	51
Cyprus	452	439	427	414	401	389	376	363	350	342	333	324	315	306	297	288
Czech Republic	855	839	823	807	791	775	759	743	727	698	669	640	612	583	554	525
Germany	428	408	388	368	348	328	308	288	268	257	245	233	221	209	198	186
Denmark	297	272	247	222	197	172	147	122	97	97	98	98	99	99	99	100
Estonia	1346	1324	1302	1280	1258	1237	1215	1193	1171	1117	1064	1010	957	904	850	797
Spain	361	326	290	254	219	183	148	112	77	75	74	73	72	70	69	68
Finland	231	217	204	190	176	162	149	135	121	119	117	116	114	112	110	108
France	95	88	82	76	69	63	56	50	43	43	43	42	42	41	41	41
Greece	559	532	505	478	452	425	398	371	344	331	318	305	291	278	265	252
Croatia	387	380	373	365	358	350	343	335	328	318	307	297	287	277	267	257
Hungary	302	280	257	234	212	189	167	144	122	121	120	120	119	118	118	117
Irland	426	404	382	360	337	315	293	271	249	240	231	221	212	203	194	184
Italy	388	374	360	346	332	317	303	289	275	270	264	259	253	248	243	237
Lithuania	391	372	354	335	316	297	279	260	241	234	226	219	211	204	196	189
Luxembourg	381	374	367	360	354	347	340	334	327	325	324	322	320	319	317	316
Latvia	252	245	238	230	223	216	208	201	194	189	184	179	174	169	164	159
Malta	525	518	510	502	494	486	478	471	463	461	460	458	456	455	453	451
Netherlands	427	414	400	386	373	359	346	332	319	314	310	306	302	298	294	290
Poland	1050	1011	973	934	895	856	818	779	740	712	684	655	627	599	570	542
Portugal	258	242	227	211	196	180	165	149	134	130	126	121	117	113	109	105
Romania	520	484	448	412	376	340	304	268	232	225	219	213	207	200	194	188
Sweden	62	60	58	57	55	53	51	49	48	47	46	45	44	43	42	41
Slovenia	383	368	353	338	322	307	292	277	262	252	242	232	222	213	203	193
Slovakia	239	236	234	231	229	226	224	222	219	213	207	201	195	188	182	176
United Kingdom	256	242	229	215	201	188	174	160	147	142	137	133	128	124	119	114
Electr. ee	30	30	30	29	29	29	29	28	28	28	28	27	27	27	27	27

5 ADAC explicitly requested for the German electricity mix to use the GHG emissions for 2022 from the Bundesanzeiger [Bundesanzeiger 2021]; for 2030 and 2050 the GHG emissions and the primary energy demand from the IINAS study [IINAS 2021].

Supply to charging station							k	Wh fo	sil/kW	h						
Electricity	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
Europe 28	1.87	1.80	1.73	1.66	1.59	1.52	1.45	1.39	1.32	1.29	1.26	1.23	1.20	1.17	1.14	1.11
Austria	1.04	1.00	0.96	0.92	0.89	0.85	0.81	0.78	0.74	0.72	0.71	0.69	0.67	0.65	0.64	0.62
Belgium	1.97	1.84	1.71	1.59	1.46	1.33	1.21	1.08	0.95	0.94	0.93	0.93	0.92	0.91	0.90	0.89
Bulgaria	2.81	2.72	2.63	2.53	2.44	2.35	2.26	2.16	2.07	2.03	1.99	1.96	1.92	1.88	1.85	1.81
Switzerland	1.24	1.22	1.20	1.19	1.17	1.15	1.13	1.11	1.09	1.08	1.08	1.07	1.06	1.05	1.04	1.03
Cyprus	1.73	1.68	1.63	1.58	1.53	1.48	1.43	1.38	1.32	1.29	1.25	1.22	1.18	1.14	1.11	1.07
Czech Republic	3.34	3.29	3.24	3.19	3.14	3.09	3.03	2.98	2.93	2.88	2.84	2.79	2.74	2.70	2.65	2.60
Germany	1.37	1.30	1.23	1.16	1.09	1.02	0.95	0.88	0.81	0.77	0.74	0.70	0.66	0.63	0.59	0.55
Denmark	0.70	0.65	0.59	0.53	0.48	0.42	0.36	0.31	0.25	0.26	0.27	0.27	0.28	0.29	0.29	0.30
Estonia	3.36	3.29	3.22	3.16	3.09	3.03	2.96	2.89	2.83	2.70	2.58	2.45	2.32	2.20	2.07	1.95
Spain	1.70	1.58	1.47	1.35	1.24	1.12	1.01	0.89	0.78	0.74	0.71	0.68	0.64	0.61	0.58	0.54
Finland	1.83	1.75	1.68	1.60	1.52	1.45	1.37	1.29	1.22	1.20	1.19	1.17	1.16	1.14	1.13	1.11
France	2.32	2.27	2.23	2.18	2.13	2.09	2.04	1.99	1.95	1.90	1.85	1.80	1.76	1.71	1.66	1.61
Greece	1.80	1.68	1.57	1.45	1.34	1.23	1.11	1.00	0.89	0.86	0.84	0.82	0.79	0.77	0.75	0.72
Croatia	1.38	1.34	1.30	1.26	1.22	1.17	1.13	1.09	1.05	1.02	0.99	0.95	0.92	0.89	0.86	0.83
Hungary	2.81	2.79	2.77	2.75	2.73	2.72	2.70	2.68	2.66	2.63	2.60	2.57	2.54	2.51	2.48	2.45
Irland	1.39	1.32	1.25	1.18	1.10	1.03	0.96	0.89	0.82	0.79	0.76	0.73	0.70	0.67	0.64	0.60
Italy	1.87	1.77	1.68	1.58	1.49	1.39	1.30	1.20	1.11	1.08	1.05	1.02	1.00	0.97	0.94	0.91
Lithuania	1.94	1.87	1.80	1.73	1.65	1.58	1.51	1.44	1.37	1.35	1.32	1.30	1.27	1.25	1.22	1.20
Luxembourg	1.52	1.50	1.47	1.44	1.42	1.39	1.36	1.34	1.31	1.30	1.29	1.29	1.28	1.27	1.26	1.25
Latvia	0.94	0.91	0.88	0.85	0.82	0.79	0.75	0.72	0.69	0.68	0.66	0.64	0.63	0.61	0.59	0.58
Malta	2.04	2.00	1.97	1.94	1.91	1.88	1.84	1.81	1.78	1.77	1.77	1.76	1.76	1.75	1.74	1.74
Netherlands	1.44	1.41	1.38	1.36	1.33	1.30	1.28	1.25	1.22	1.20	1.19	1.17	1.15	1.13	1.11	1.09
Poland	2.71	2.62	2.52	2.43	2.34	2.25	2.16	2.07	1.98	1.93	1.89	1.85	1.81	1.76	1.72	1.68
Portugal	0.82	0.77	0.72	0.67	0.62	0.57	0.53	0.48	0.43	0.41	0.39	0.38	0.36	0.34	0.33	0.31
Romania	2.06	2.01	1.95	1.89	1.83	1.77	1.72	1.66	1.60	1.57	1.55	1.52	1.50	1.48	1.45	1.43
Sweden	1.16	1.13	1.11	1.08	1.05	1.03	1.00	0.97	0.95	0.94	0.93	0.91	0.90	0.89	0.88	0.87
Slovenia	2.01	1.96	1.91	1.86	1.81	1.76	1.71	1.66	1.61	1.59	1.58	1.56	1.54	1.53	1.51	1.49
Slovakia	2.51	2.49	2.47	2.45	2.43	2.41	2.39	2.36	2.34	2.31	2.28	2.25	2.22	2.19	2.16	2.12
United Kingdom	1.44	1.39	1.33	1.27	1.21	1.15	1.09	1.03	0.97	0.97	0.96	0.96	0.95	0.94	0.94	0.93
Electr. ee	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03

Table 19 Background data for the supply of electricity to the charging station Part II

[JOANNEUM RESEARCH 2022] based on electricity mix defined in foreground data⁶ Part II

Supply to charging station							k	Wh ren	ew./kW	′h						
Electricity	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
Europe 28	0.65	0.68	0.71	0.73	0.76	0.79	0.81	0.84	0.87	0.87	0.87	0.87	0.87	0.87	0.88	0.88
Austria	0.94	0.97	0.99	1.02	1.05	1.08	1.11	1.13	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16
Belgium	0.53	0.56	0.59	0.62	0.66	0.69	0.72	0.75	0.78	0.78	0.77	0.77	0.76	0.76	0.75	0.75
Bulgaria	0.38	0.45	0.51	0.58	0.65	0.71	0.78	0.85	0.91	0.92	0.93	0.93	0.94	0.95	0.96	0.96
Switzerland	0.81	0.85	0.88	0.92	0.96	0.99	1.03	1.06	1.10	1.09	1.08	1.08	1.07	1.06	1.05	1.05
Cyprus	0.33	0.34	0.34	0.35	0.35	0.36	0.36	0.36	0.37	0.39	0.40	0.42	0.44	0.45	0.47	0.49
Czech Republic	0.21	0.24	0.26	0.29	0.31	0.34	0.37	0.39	0.42	0.42	0.43	0.43	0.44	0.44	0.45	0.45
Germany	0.88	0.89	0.90	0.91	0.92	0.92	0.93	0.94	0.95	0.96	0.97	0.99	1.00	1.01	1.02	1.03
Denmark	1.44	1.44	1.44	1.44	1.43	1.43	1.43	1.43	1.43	1.41	1.38	1.36	1.34	1.31	1.29	1.27
Estonia	0.44	0.47	0.50	0.53	0.56	0.59	0.62	0.65	0.68	0.70	0.71	0.73	0.74	0.76	0.77	0.79
Spain	0.82	0.87	0.92	0.97	1.02	1.07	1.11	1.16	1.21	1.22	1.22	1.23	1.23	1.24	1.24	1.25
Finland	0.95	1.02	1.08	1.14	1.21	1.27	1.34	1.40	1.47	1.46	1.46	1.45	1.45	1.44	1.44	1.43
France	0.49	0.51	0.53	0.55	0.57	0.59	0.61	0.63	0.64	0.66	0.67	0.69	0.70	0.72	0.73	0.75
Greece	0.64	0.69	0.74	0.79	0.84	0.89	0.93	0.98	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03
Croatia	0.75	0.78	0.80	0.83	0.86	0.88	0.91	0.94	0.96	0.97	0.98	0.99	1.00	1.00	1.01	1.02
Hungary	0.40	0.42	0.43	0.44	0.46	0.47	0.48	0.50	0.51	0.51	0.52	0.52	0.52	0.52	0.52	0.53
Irland	0.57	0.61	0.64	0.68	0.71	0.75	0.78	0.82	0.86	0.85	0.85	0.85	0.85	0.84	0.84	0.84
Italy	0.66	0.69	0.72	0.76	0.79	0.82	0.86	0.89	0.92	0.93	0.93	0.94	0.94	0.95	0.95	0.96
Lithuania	0.61	0.63	0.65	0.67	0.69	0.71	0.73	0.74	0.76	0.77	0.77	0.78	0.78	0.79	0.79	0.80
Luxembourg	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.69	0.69	0.68	0.67	0.66	0.65	0.65	0.64
Latvia	0.98	1.01	1.04	1.08	1.11	1.14	1.18	1.21	1.24	1.23	1.22	1.22	1.21	1.20	1.19	1.18
Malta	0.16	0.17	0.17	0.18	0.18	0.19	0.19	0.20	0.20	0.20	0.20	0.20	0.20	0.19	0.19	0.19
Netherlands	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.88	0.88	0.88	0.87	0.87	0.87
Poland	0.44	0.47	0.51	0.54	0.58	0.62	0.65	0.69	0.72	0.73	0.74	0.75	0.76	0.77	0.78	0.79
Portugal	1.11	1.13	1.15	1.17	1.19	1.21	1.23	1.25	1.27	1.27	1.27	1.28	1.28	1.28	1.29	1.29
Romania	0.83	0.88	0.93	0.98	1.04	1.09	1.14	1.19	1.24	1.25	1.26	1.26	1.27	1.28	1.28	1.29
Sweden	1.18	1.21	1.24	1.26	1.29	1.31	1.34	1.37	1.39	1.39	1.38	1.37	1.37	1.36	1.35	1.34
Slovenia	0.48	0.50	0.52	0.54	0.56	0.58	0.60	0.62	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64
Slovakia	0.43	0.44	0.45	0.46	0.48	0.49	0.50	0.52	0.53	0.54	0.54	0.55	0.56	0.57	0.58	0.58
United Kingdom	0.82	0.87	0.91	0.95	0.99	1.04	1.08	1.12	1.17	1.16	1.15	1.15	1.14	1.14	1.13	1.12
Electr. ee	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05

6 The ADAC explicitly requested for the German electricity mix to use the GHG emissions for 2022 from the Bundesanzeiger [Bundesanzeiger 2021]; for 2030 and 2050 the GHG emissions and the primary energy demand from the IINAS study [IINAS 2021].

Supply to charging station								kWh to	tal/kWh	1						
Electricity	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
Europe 28	2.52	2.48	2.44	2.39	2.35	2.31	2.27	2.23	2.19	2.16	2.13	2.10	2.07	2.04	2.01	1.99
Austria	1.97	1.97	1.96	1.95	1.94	1.93	1.92	1.91	1.90	1.88	1.87	1.85	1.83	1.82	1.80	1.78
Belgium	2.50	2.40	2.31	2.21	2.12	2.02	1.93	1.83	1.74	1.72	1.71	1.69	1.68	1.66	1.65	1.64
Bulgaria	3.19	3.17	3.14	3.11	3.09	3.06	3.03	3.01	2.98	2.95	2.92	2.89	2.86	2.83	2.80	2.77
Switzerland	2.05	2.07	2.09	2.11	2.12	2.14	2.16	2.17	2.19	2.18	2.16	2.14	2.13	2.11	2.10	2.08
Cyprus	2.06	2.02	1.97	1.93	1.88	1.83	1.79	1.74	1.69	1.67	1.66	1.64	1.62	1.60	1.58	1.56
Czech Republic	3.55	3.53	3.50	3.48	3.45	3.43	3.40	3.38	3.35	3.31	3.27	3.22	3.18	3.14	3.10	3.06
Germany	2.25	2.19	2.13	2.07	2.01	1.94	1.88	1.82	1.76	1.74	1.71	1.69	1.66	1.64	1.61	1.59
Denmark	2.14	2.09	2.03	1.97	1.91	1.85	1.80	1.74	1.68	1.66	1.65	1.63	1.62	1.60	1.58	1.57
Estonia	3.80	3.76	3.73	3.69	3.65	3.62	3.58	3.54	3.51	3.40	3.29	3.18	3.06	2.95	2.84	2.73
Spain	2.52	2.45	2.39	2.32	2.25	2.19	2.12	2.06	1.99	1.96	1.93	1.90	1.88	1.85	1.82	1.79
Finland	2.78	2.77	2.76	2.74	2.73	2.72	2.71	2.69	2.68	2.66	2.64	2.62	2.60	2.58	2.56	2.54
France	2.81	2.79	2.76	2.73	2.70	2.67	2.65	2.62	2.59	2.56	2.53	2.49	2.46	2.43	2.40	2.36
Greece	2.44	2.37	2.31	2.24	2.18	2.11	2.05	1.98	1.92	1.90	1.87	1.85	1.82	1.80	1.78	1.75
Croatia	2.13	2.12	2.10	2.09	2.07	2.06	2.04	2.03	2.01	1.99	1.97	1.94	1.92	1.90	1.87	1.85
Hungary	3.21	3.21	3.20	3.20	3.19	3.19	3.18	3.18	3.17	3.14	3.12	3.09	3.06	3.03	3.00	2.97
Irland	1.96	1.92	1.89	1.85	1.82	1.78	1.75	1.71	1.68	1.64	1.61	1.58	1.54	1.51	1.47	1.44
Italy	2.53	2.46	2.40	2.34	2.28	2.22	2.15	2.09	2.03	2.01	1.98	1.96	1.94	1.92	1.89	1.87
Lithuania	2.54	2.49	2.44	2.39	2.34	2.29	2.24	2.19	2.14	2.12	2.10	2.08	2.06	2.04	2.02	2.00
Luxembourg	2.22	2.20	2.17	2.14	2.11	2.09	2.06	2.03	2.01	1.99	1.97	1.96	1.94	1.92	1.91	1.89
Latvia	1.92	1.92	1.92	1.92	1.93	1.93	1.93	1.93	1.93	1.91	1.88	1.86	1.84	1.81	1.79	1.76
Malta	2.20	2.17	2.15	2.12	2.09	2.06	2.04	2.01	1.98	1.97	1.97	1.96	1.95	1.95	1.94	1.93
Netherlands	2.33	2.30	2.28	2.25	2.22	2.19	2.17	2.14	2.11	2.09	2.07	2.05	2.03	2.00	1.98	1.96
Poland	3.14	3.09	3.03	2.98	2.92	2.87	2.81	2.75	2.70	2.67	2.63	2.60	2.57	2.53	2.50	2.47
Portugal	1.93	1.90	1.87	1.84	1.81	1.78	1.75	1.72	1.70	1.68	1.67	1.66	1.64	1.63	1.62	1.60
Romania	2.90	2.89	2.88	2.87	2.87	2.86	2.85	2.85	2.84	2.82	2.81	2.79	2.77	2.75	2.73	2.72
Sweden	2.34	2.34	2.34	2.34	2.34	2.34	2.34	2.34	2.34	2.32	2.31	2.29	2.27	2.25	2.23	2.22
Slovenia	2.49	2.46	2.43	2.40	2.37	2.34	2.31	2.28	2.25	2.23	2.22	2.20	2.18	2.17	2.15	2.14
Slovakia	2.93	2.93	2.92	2.91	2.90	2.90	2.89	2.88	2.87	2.85	2.83	2.80	2.78	2.75	2.73	2.71
United Kingdom	2.27	2.25	2.24	2.22	2.20	2.19	2.17	2.16	2.14	2.13	2.12	2.11	2.09	2.08	2.07	2.06
Electr. ee	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08

Table 20 Background data for the supply of hydrogen to the filling station

[JOANNEUM RESEARCH 2022]

Supply to filling station							!	g CO ₂ -e	q./kWh	1						
Hydrogen	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
H ₂ natural gas	382	379	376	373	370	367	364	361	358	357	357	357	357	356	356	356
H ₂ ee	48.9	48.3	47.7	47.1	46.6	46.0	45.4	44.8	44.2	43.8	43.4	42.9	42.5	42.1	41.7	41.3

Supply to filling station							k	Wh fos	sil/kW	h						
Hydrogen	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
H ₂ natural gas	1.81	1.79	1.77	1.75	1.74	1.72	1.70	1.68	1.66	1.66	1.65	1.65	1.64	1.64	1.63	1.63
H ₂ ee	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04

Supply to filling station							k	Wh ren	ew./kW	'n						
Hydrogen	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
H ₂ natural gas	0.10	0.10	0.10	0.11	0.11	0.11	0.11	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
H ₂ ee	1.67	1.67	1.66	1.65	1.64	1.64	1.63	1.62	1.61	1.61	1.61	1.60	1.60	1.60	1.60	1.59

Supply to filling station								kWh to	tal/kWh	1						
Hydrogen	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
H ₂ natural gas	1.90	1.89	1.88	1.86	1.85	1.83	1.82	1.80	1.79	1.78	1.78	1.77	1.76	1.76	1.75	1.75
H ₂ ee	1.72	1.72	1.71	1.70	1.69	1.68	1.68	1.67	1.66	1.66	1.65	1.65	1.65	1.64	1.64	1.63

ANNEX II: ABBREVIATIONS

BEV	Battery Electric Vehicle
bioCO ₂	Biogenic CO ₂ from flue gas (12 - 15 vol%) of biomass combustion
CO₂air	Capture of CO ₂ from air (0.04 vol%)
CNG	Compressed natural gas
CO_2	Carbon dioxide
CH₄	Methane
CHP	Combined heat and power (plant)
CRG	Compressed renewable gas
dLUC	Direct land use change
E-fuel	Synthetic fuel, produced with electricity (Power-to-fuel) and CO ₂ from air or sustainable
	biomass
EtOH	(Bio)Ethanol
FAME	Fatty acid methyl ester (biodiesel)
FT-diesel	Fischer-Tropsch diesel
GHG	Greenhouse gas emissions
H ₂	Hydrogen
HEV	Hybrid electric vehicle
HFCV	Hydrogen fuel cell vehicle
HFC	Hydrogen fuel cell
HVO	Hydrated vegetable oil
Hydro	Hydro power
ICE	Internal combustion engine
ICEV	Internal combustion engine vehicle
iLUC	Indirect land use change
LCA	Life Cycle Assessment
LUC	Land use change
N_2O	Nitrous oxide (laughing gas)
PED	Primary energy demand
PHEV	Plug-In hybrid electric vehicle
PV	Photovoltaics

ANNEX III: REFERENCES

- Aichberger et al. 2020: Aichberger, C.; Jungmeier, G. Environmental Life Cycle Impacts of Automotive Batteries Based on a Literature Review. Energies 2020, 13, 6345, doi:10.3390/en13236345.
- Aichberger et al. 2020a: Aichberger, C.; Beermann, M.; Jungmeier, G. LCA of EV Batteries Materials, Production, Recycling (IEA HEV Task 40 CRM₄EV Webinar 2, 10 June 2020) 2020.
- Bauer 2022: Review of the report "Estimated Greenhouse Gas Emissions and Primary Energy Consumption in the Life Cycle Assessment of Passenger Vehicles", version 2.0, November 2021, Christian Bauer, Technology Assessment, Paul Scherrer Institut (PSI), <u>christian.bauer@psi.ch</u>; 8 January 2021.
- BioGrace 2015: The BioGrace GHG calculation tool: a recognised voluntary scheme by the European Commission in line with the sustainability criteria of the Renewable Energy Directive (2009/28/EC, RED) and the Fuel Quality Directive (2009/30/EC); <u>www.biograce.net</u>.
- Bundesanzeiger 2021: Umweltbundesamt Bekanntmachung nach § 5 Absatz 3 der Verordnung zur Festlegung weiterer Bestimmungen zur Treibhausgasminderung bei Kraftstoffen vom 4. Oktober 2021, veröffentlicht am Donnerstag, 28. Oktober 2021, <u>www.bundesanzeiger.de</u>.
- Ecoinvent 2019 (version 3.4): Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., and Weidema, B., 2016. The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, [online] 21(9), pp.1218-1230. Available at: link.springer.com/10.1007/s11367-016-1087-8, 6 March 2019.
- EU 2009: DIRECTIVE 2009/28/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, Brussel, 5 June 2009.
- EU 2015: Directive (EU) 2015/1513 of the European Parliament and of the Council of 9 September 2015 amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources, Brussel, 9 September 2015.
- EU 2018: DIRECTIVE (EU) 2018/2001 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 11 December 2018 on the promotion of the use of energy from renewable sources, Brussels 2018.
- EUROBAT 2021: Association of European Automotive and Industrial Battery Manufacturers; Avicenne study: "EU battery demand and supply (2019-2030) in a global context" shows that in the next decade lead and lithium batteries are critical to clean energy transition. Retrieved from EUROBAT: <a href="https://www.eurobat.org/resource/avicenne-study-eu-battery-demand-and-supply-2019-2030-in-a-global-context-shows-that-%e2%80%8ein-the-next-decade-lead-and-lithium-batteries-are-critical-to-clean-energy-transition-2/.
- GEMIS 2019: GEMIS 5.0: GEMIS Globales Emissions-Modell integrierter Systeme, <u>iinas.org/downloads/</u> <u>gemis-downloads/</u>.
- Green NCAP 2022: Information received from Green NCAP, October 2022.
- Hausberger et al. 2018: S. Hausberger, S. Lipp: Energieverbrauch und Emissionen von PKW mit unterschiedlichen Antrieben (Energy Demand and Emissions of Passenger Vehicles with Different Propulsion Systems), Institut für Verbrennungskraftmaschinen und Thermodynamik, Graz University of Technology, Graz 2018.
- Hill et al. 2020: Nicolas Hill: Determining the Environmental Impacts of Conventional and Alternatively Fuelled Vehicles Through LCA, Ricardo, under Contract of European Commission, DG Climate Action, Brussels 2020.

- Hill et al. 2021: N. Hill, G. Building, F. Avenue, H. Didcot: Lifecycle Analysis of UK Road Vehciles, Ricardo under contract of UK Departement of Transport, 2021.
- IINAS 2021: U Fritsche, H.-W. Greß: Der nichterneuerbare kumulierte Energieverbrauch und THG-Emissionen des deutschen Strom-mix im Jahr 2020 sowie Ausblicke auf 2030 und 2050, Bericht für die HEA - Fachgemeinschaft für effiziente Energieanwendung e.V.; Internationales Institut für Nachhaltigkeitsanalysen und –strategien, 2021.
- IPCC 2019: The Intergovernmental Panel on Climate Change, www.ipcc.ch.
- Jungmeier et al. 2019: G. Jungmeier, L. Canella, J. Pucker-Singer, M. Beermann: Estimated Greenhouse Gas Emissions and Primary Energy Consumption in the Life Cycle Assessment of Transportation Systems with Passenger Vehicles, JOANNEUM REPORT, Graz September 2019.
- Jungmeier et al. 2022: G. Jungmeier, L. Canella, C. Aichberger, M. Beermann: Estimated Greenhouse Gas Emissions and Primary Energy Consumption in the Life Cycle Assessment of Passenger Vehicles, JOANNEUM REPORT, Graz February 2022.
- Jungmeier et al. 2022a: G. Jungmeier, L. Canella: Estimated Greenhouse Gas Emissions and Primary Energy Demand of Passenger Vehicles Tested in Green NCAP - Life Cycle Assessment Methodology and Data, April 2022; <u>www.greenncap.com/wp-content/uploads/Green-NCAP-Life-Cycle-Assessment-Methodology-and-Data.pdf</u>.
- JRC 2020: Well-To-Wheels report v5, Luxembourg: Publications Office of the European Union, 2020, <u>ec.europa.eu/jrc</u>, Joint Research Centre 2020.
- JOANNEUM RESEARCH 2022: LCA data collection from LCA projects since 1993, implemented in GEMIS software and own LCA calculation tool, Graz 2022.
- Pucker-Singer et al. 2021: Pucker-Singer J., Aichberger C., Zupančič J., Neumann C., Bird D. N., Jungmeier G., Gubina A., Tuerk A.: Gas Emissions of Stationary Battery Installations in Two Renewable Energy Projects. Sustainability 2021, 13, 6330. <u>doi.org/10.3390/su13116330</u>.

VW 2021: www.volkswagenag.com/en/sustainability/reporting.html