

Citroën ë-C3

MAX ELECTRIC FWD AUTOMATIC

Sustainability Rating

Clean Air

9.3 /10

Energy Efficiency

8.1/10

Greenhouse Gases

9.9/10

Driving Experience

Consumption & Range

ADEQUATE

Cold Winter Performance

ADEQUATE

Charging Capability

POOR

Our verdict

Although the Citroën ë-C3 is a compact electric European vehicle with low mass and small battery, its sustainability performance is just sufficient for a 5-star rating. The scoring is lower compared to that of other similar vehicles and can be largely attributed to a limited powertrain efficiency and relatively high electricity consumption values.

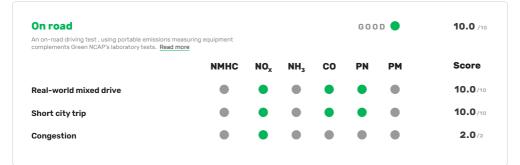
- The e-C3 has no exhaust emissions, it scores well for brake abrasion, and adequately for tyre abrasion
- It performs modestly in energy efficiency, especially in cold and highway conditions, likely due to an inefficient powertrain and heating system and higher aerodynamic drag
-) Despite the relatively high energy use, the car scores top marks in greenhouse gas emissions thanks to its lightweight design, small battery, and low-emission European electricity supply.

The ë-C3 surprised in a rather negative way. It demonstrates that not every small electric vehicle scores equally in terms of sustainability and that powertrain design, strategy and selection of components are essential in the efforts for minimising environmental impact.

Disclaimer

9.3 /10

Comments


Due to its electric powertrain, the ë-C3 doesn't have any exhaust emissions. The vehicle scores adequately for tyre abrasion. The reduction of brake abrasion through kinetic energy recuperation and the associated minimisation of friction brake usage helps reach a high score in this part of the assessment.

Exhaust emissions

Exhaust pollutant emissions are produced from combustion engines. Although current emission legislation is very strict, this type of emission directly affects air quality, and not all vehicles perform equally well. Read more

GOOD • 10.0_{/10}

In laboratory					G 0 0	D 👿	10.0 /10
Green NCAP performs a wide range of tests on car controlled conditions and guarantee that all cars a comparable. Read more							
	NMHC	NO _x	NH ₃	СО	PN	PM	Score
Legal test (WLTP)	•	•		•		•	8.0 /8
Warm weather	•	•	•	•		•	10.0/10
Highway	•	•	•	•		•	10.0/10
Winter cold start	•	•	•	•		•	10.0/10
Winter warm start	•						10.0/10

9.3 /10

Non-exhaust emissions

Driving a vehicle also produces emissions different from those of the exhaust pipe. Green NCAP evaluates vehicle properties that contribute to tyre and brake abrasion.

ADEQUATE -

ADEQUATE -

2025

7.7/10

3.8/6

Score

2.3/30.5/1

5.4/6

Tyre wear

Tyre abrasion releases small particles during driving, and some vehicle properties have major impact on it. Heavier vehicles, wheel alignment causing increased slip angle, and aggressive acceleration responses all increase tyre wear and particle emissions. Read more

Influence of mass

Wheel alignment

Result

GOOD

Result

Accelerator response

1.0/2

Brake wear

Brake dust, produced by friction brakes, can be mitigated through filters, enclosed brake systems (like drums), or by reducing friction brake use with regenerative braking in electrified vehicles. Containment keeps dust inside the system, while recuperation lowers brake wear. However, heavier vehicles still generate more brake abrasion due to their greater stopping demands. Read more

Score

Brake dust mitigation

0.0/4

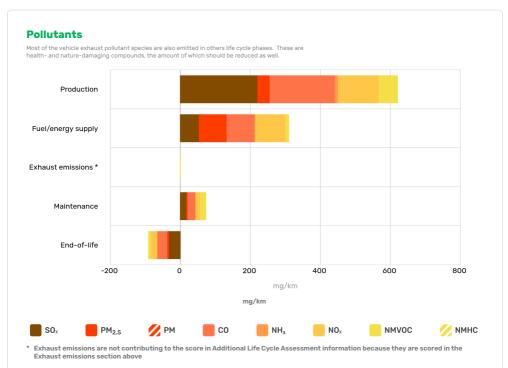
Brake dust containment

0.0/6

Recuperative braking - warm test

5.4/6

9.3 /10


Additional Life Cycle Assessment information

Life Cycle Assessment (LCA) investigates the environmental impact of a car over its entire lifetime, 'from cradle to grave'. In this section, pollutants are estimated in the various stages of a whicle's life to ther than use. The chart also displays the measured emissions related to usage, which are taken as an average from the tests and are scored separately in the 'Exhaust emissions' part above. The end-of-life approach uses results in negative values because the benefit of materials recovery and recycling exceeds the effort of obtaining and processing virgin raw materials.

ADEQUATE 🛑

2025

8.8/10

Energy Efficiency

8.1/10

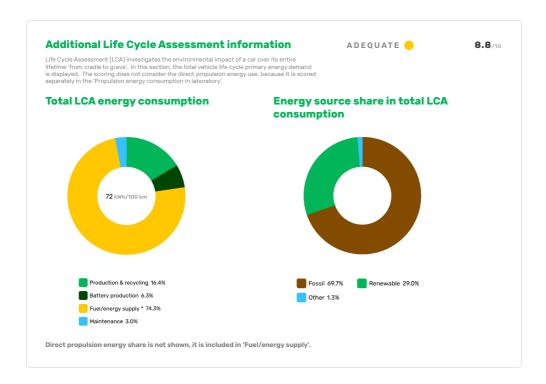
Comments

For an electric vehicle of this type, the ë-C3 scores poorly in the Energy Efficiency Index. It generally uses relatively high amounts of energy and the numbers are significantly increased in the -7°C cold winter tests and the Highway Test. The reasons likely are a limited efficiency powertrain, high aerodynamic drag due to the edgy body shape and high consumption heating system, based on a PTC heater only.

Energy demand

adequate

marginal



not applicable

Energy Efficiency

8.1/10

Rolling resistance

Rated here is the vehicle's resistance to movement at low speeds. Different factors have an impact on it, but the most significant one is mass.

ADEQUATE -

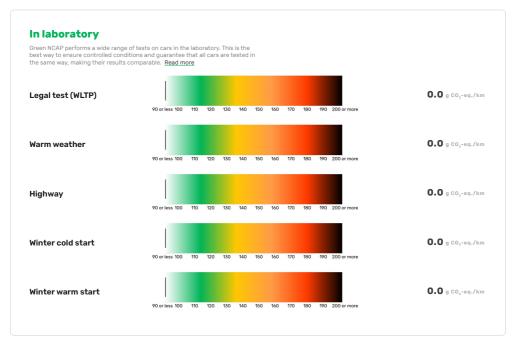
7.3/10

🔼 Greenhouse Gases

9.9 /10

Comments

Thanks to its lightweight, small battery, European production and relatively low emissions of European average electricity supply, the ë-C3 achieves almost all points in the Greenhouse Gas Index, despite its relatively high consumption figures.


Exhaust GHG emissions

Combustion of conventional fuels releases greenhouse gases at the vehicle's tailpipe. The most significant of these gases are the emissions of CO_2 . Green NCAP's assessment considers methane (CH_3) and laughing gas (N_2 O) as well. Together, these are counted with their global warming potential to a sum known as CO_2 equivalent.

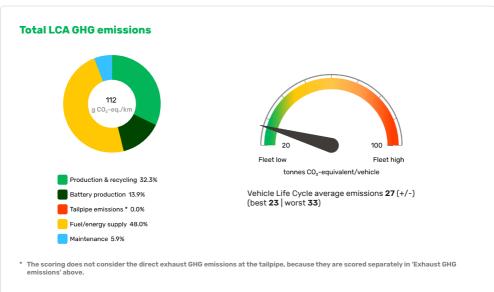
GOOD 🛑

2025

10.0/10

Greenhouse Gases

9.9 /10


Additional Life Cycle Assessment information

Life Cycle Assessment (LCA) investigates the environmental impact of a car over its entire lifetime, 'from cradle to grave'. In this section, the total vehicle life cycle greenhouse gas emissions are displayed.

ADEQUATE -

2025

6.7/10

Driving Experience

Consumption & Range

ADEQUATE

Cold Winter Performance

ADEQUATE

Charging Capability

POOR

Green NCAP Comment

The ë-C3 failed to impress in the Driving Experience assessment.

- The estimated real-world consumption figures are adequate in warm weather conditions and mostly poor in cold winter usage. The resulting driving ranges are low and lead to another poor note.
- In cold winter driving conditions, drivers can increase the driving range if the vehicle can be preheated while it is plugged and before the trip starts. Yet, due to the small battery, the driving range gain evaluation remains 'adequate'. The ë-C3 manages to heat up the front part of its cabin quickly, but the temperatures in the rear footwell did not reach 16°C during the test. The heating concept relies on a PTC heater only, which is most likely the reason for the high electricity demand for heating.
- The standard home AC charging performance is adequate with a 87.2% grid-to-battery efficiency, but the DC fast charging performance is limited and leads to a poor score. The car does not offer any bi-directional charging functions.

Consumption & Range

ADEQUATE -

ADEQUATE -

POOR

GOOD

Estimated actual consumption

What consumption can be expected in real world conditions?

In-laboratory measured consumption values are only partially representative of real-world use. Green NCAP's estimates aim at providing more realistic figures, which are based on measured results, modified by correction factors.

Conditions	Urban	Rural	Highway	Mixed	
Warm weather	17.3	18.4	22.3	19.1	kWh/100 km
Cold Winter	38.9	26.1	31.0	32.2	kWh/100 km

Driving range

What driving range can be expected in real world conditions?

Of special importance to consumers is the real-world driving range of electric vehicles. Green NCAP estimates this based on measured data, modified by correction factors.

Conditions	Urban	Rural	Highway	Mixed	
Warm weather	287	270	223	261	km
Cold Winter	128	190	161	154	km

Accuracy of display

Is the consumption figure on the display correct?

not applicable

Cold Winter Performance

ADEQUATE -

90%

Driving range benefit of pre-warming

ADEQUATE |

How much further can you drive in winter, if the car is pre-warmed?

A cold vehicle has increased energy consumption at the start of its trip, mostly due to the cabin heating demand. Pre-warming the car while it is plugged, when possible, can significantly benefit its driving range in cold weather conditions. Green NCAP's winter tests are performed at -7°C.

Туре	Driving Range Benefit	Result
Urban trip	+99 km	•
Mixed trip	+50 km	

Cabin heating

ADEQUATE -

Does the vehicle get warm quickly in winter?

This indicates the time needed to reach 16°C in seconds at different positions in the cabin after the cold vehicle has been started at -7°C ambient temperature.

	Front	Rear
Head area	315 s	513 s
Footwell	197 s	
The target temperature in the rear footwell was not reached during the test.		

Cold Winter Performance

Additional heating functions

What functions can be used to improve heating comfort?

Unlike a combustion car, which usually uses the engine's waste heat to provide warmth to the cabin, in electric vehicles, the energy needed comes from the battery. Therefore, there is a trade-off between thermal comfort and energy consumption. Some additional heating functions can deliver good thermal comfort performance at lower energy use compared to heating up the entire cabin. If they can be scheduled or remotely activated before a trip, while the vehicle is still plugged, both comfort and driving range can be notably improved.

	Y/N	Fitment
Heat pump	×	
Seating heating front		Optional for the tested version
Seating heating rear	X	
Steering wheel heating		Optional for the tested version
Sheduled pre-heating of seats	×	
Scheduled steering wheel pre-heating	×	
Scheduled cabin air pre-heating		Standard
Smart cabin heating management	×	

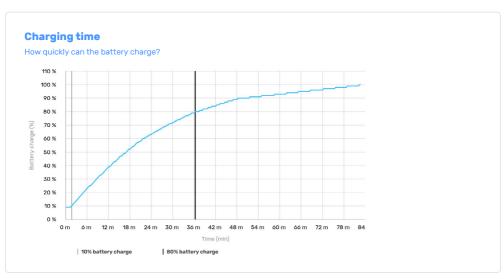
Cabin thermal insulation

ADEQUATE -

How well does the cabin maintain its temperature? Assessed here is the average cabin temperature drop after 30 minutes, starting from 18°C when the outside temperature is -7°C and the vehicle

Charging Capabilities

Does the vehicle have the ability to optimize the battery temperature for fast charging?


Fast charging is quicker when the battery temperature is in a certain range, and many vehicles possess the function to actively prepare for a coming fast charging event. Most use the charger destination in the navigational system to control the process, and some would offer a manual activation function.

	Manual	Automatic
Battery pre-conditioning	×	×

Fast charging

POOR

Green NCAP's fast charging test verifies the vehicle's ability to recharge fast, which is crucial at long trips or tight schedules. Although constantly improving, not all vehicles offer the same capabilities.

Charging Capabilities

POOR

POOR

Fast charging

Green NCAP's fast charging test verifies the vehicle's ability to recharge fast, which is crucial at long trips or tight schedules. Although constantly improving, not all vehicles offer the same capabilities.

not applicable

adequate

Charging Capabilities

POOR

ADEQUATE -

Is charging at home efficiently utilizing the energy withdrawn from the grid?

The assessed efficiency value is the grid-to-battery-output efficiency, which describes what share of the energy taken from the electricity grid is available for the vehicle to use for propulsion and other auxiliary functions. The value encompasses not only the charger efficiency but considers several other losses as well.

Home charging efficiency

87%

2025

Maximum home charging power

11.0 kW

Bidirectional charging

POOR

How capable is the vehicle of supplying energy from its battery to other devices or systems?

Bi-directional charging is available in some vehicles and is gaining increasing popularity. It comes with different power and functionality levels. However, battery usage for purposes additional to regular vehicle driving and charging might be disadvantageous for its durability and manufacturers might introduce limitations to protect it.

Power output

Not available

Compatibility

Vehicle-to-Load (V2L)

The inlet or the interior socket can provide AC power through an electrical domestic socket.

Vehicle-to-Household (V2H)

The vehicle can provide power to a household through a charger.

Vehicle-to-Grid (V2G)

The vehicle can return power to the arid.

Grid integration

No integration (just a socket for a stand-alone load). No scheduling option. Very basic visualisation.

Energy management system through the vehicle app (timers availability and power monitoring). Dedicated interface in the car, with mobile app monitoring

Advanced

Advanced settings available such as tariff and consumption control, linked to distributor energy prices. Advanced real time energy flow visualization. Al powered suggestions for optimal

not applicable

Specifications

Vehicle class
City and Supermini

System power/torque

83 kW/120 Nm

Engine size

n.a.

Declared consumption

16.8 kWh/100 km

2025

Declared driving range

Overall 320 km City 446 km

Declared CO₂

n.a.

Declared battery capacity

Usable (net) 44.0 kWh Installed (gross) 44.0 kWh

Mass

1,476 kg

Heating concept

PTC heater

Tyres

205/50 R17 93V

Emissions class

AX

Tested car

VR7CBZYA7RT15xxxx

Publication date

09 2025

